# 科德宝·宝翎无纺布(苏州)有限公司 年产空气净化器用过滤器 800 万个扩产 项目

# 竣工环境保护验收监测报告表

建设单位: 科德宝•宝翎无纺布(苏州)有限公司编制单位: 江苏国升明华生态技术有限公司

2020年06月

建设单位法人代表:希夫特 (签字)

编制单位法人代表: 朱华伟 (签字)

项 目 负责人:赵远升

填 表 人: 杭晓晨

建设单位: 科德宝·宝翎无纺布(苏州) 编制单位江苏国升明华生态技术有限公司

有限公司(盖章) (盖章)

电话: 0512-68252099 电话: 0512-66678029

传真: 0512-68251780 邮编: 212001

邮编:215011

地址: 苏州高新区滨河路 1588 号 地址: 苏州高新区鹿山路 369 号

— 2 —

| 建设项目名称        | 科德宝·宝翎无纺布(苏州)有限公司年产空气净化器用过滤器 800 万个<br>扩产项目                                                                                                        |                                                                                                                                         |                                                                                                                       |                           |                                                               |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------|--|--|--|
|               | ### 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                         |                                                                                                                                         |                                                                                                                       |                           |                                                               |  |  |  |
| 建设项目性质        | 新建 √改扩建 技改 迁建                                                                                                                                      |                                                                                                                                         |                                                                                                                       |                           |                                                               |  |  |  |
| 建设地点          |                                                                                                                                                    |                                                                                                                                         | 一<br>河路 1588 号                                                                                                        |                           |                                                               |  |  |  |
| 主要产品名称        |                                                                                                                                                    |                                                                                                                                         | 器                                                                                                                     |                           |                                                               |  |  |  |
|               |                                                                                                                                                    | 空气净化器用过滤                                                                                                                                | 器 800 万个/年                                                                                                            |                           |                                                               |  |  |  |
|               |                                                                                                                                                    | 空气净化器用过滤                                                                                                                                | :<br>:器 800 万个/年                                                                                                      |                           |                                                               |  |  |  |
| 建设项目环评 时间     | 2018年06月                                                                                                                                           | 开工建设时间                                                                                                                                  | 2018 年                                                                                                                | 三12月20                    | 日<br>日                                                        |  |  |  |
| 调试时间          | 2020年03月20日                                                                                                                                        | 验收现场监测时<br>间                                                                                                                            | 2020.03.                                                                                                              | 25~2020.03                | 3.26                                                          |  |  |  |
| 环评报告表<br>审批部门 | 苏州高新区环境<br>保护局                                                                                                                                     | 环评报告表<br>编制单位                                                                                                                           | 江苏环球嘉惠环境科学研究有限<br>公司                                                                                                  |                           |                                                               |  |  |  |
| 环保设施设计<br>单位  | /                                                                                                                                                  | 环保设施施工单<br>位                                                                                                                            |                                                                                                                       | /                         |                                                               |  |  |  |
| 验收监测单位        | 江苏润吴检测服<br>务有限公司                                                                                                                                   | 验收报告编制单<br>位                                                                                                                            | 江苏国升明华                                                                                                                | 生态技术                      | 有限公司                                                          |  |  |  |
| 投资总概算         | 1600 万元人民币                                                                                                                                         | 环保投资总概算                                                                                                                                 | 50 万人民币                                                                                                               | 比例                        | 3.1%                                                          |  |  |  |
| 实际总概算         | 1600 万元人民币                                                                                                                                         | 环保投资                                                                                                                                    | 50 万人民币                                                                                                               | 比例                        | 3.1%                                                          |  |  |  |
| 验收监测依据        | (2)《建设项目的号); (3)《江苏省排放号令,1992年1月 (4)《江苏省排污苏环控[97]122号, (5)《关于加强强环境保护厅苏环监[(6)《关于加强强护厅(苏环办[2009(7)《关于建设项目34号); (8)《建设项目的部公告 2018年(9)《科德宝·宝800万个扩产项目的 | 口设置及规范化整<br>1997年9月);<br>建设项目竣工环境保<br>(2006]2号文;<br>建设项目审批后环境<br>(1)316号);<br>目竣工环境保护验收<br>(3)316号);<br>日竣工环境保护验收技<br>第9号)<br>医翎无纺布(苏州) | 哲行办法》(国語行规定》(江东<br>行规定》(江东<br>治管理办法》(<br>是护验收监测工作<br>管理工作的通知<br>文有关事项的通<br>文有关事项的通<br>文本指南 污染量<br>有限公司年产名<br>2018年6月; | 环规环评 际规环评 际 海 政府[19] 江苏省环 | 992]第 38<br>意保护局,<br>, 江苏省<br>省环境保<br>办【2018】<br>生态环境<br>用过滤器 |  |  |  |

过滤器 800 万个扩产项目环境影响报告表的审批意见》(苏新环项 [2018]255 号),2018 年 11 月 28 日;

- (11)江苏润吴检测服务有限公司提供的验收检测报告(RW200401015);
- (12)《省生态环境厅关于进一步加强危险废物污染防治工作的实施意见》(苏环办〔2019〕327号)。

**原则:**建设项目竣工环境保护验收污染物排放标准原则上执行环境影响报告书(表)及其审批部门审批决定所规定的标准。 在环境影响报告书(表)审批之后发布或修订的标准对建设项目执行该标准有明确时限要求的,按新发布或修订的标准执行。

#### (1) 废气

本次验收阶段与环评时对比,项目废气执行的排放标准没有 新发布或者修订。

本项目废气为活性炭灌装产生的颗粒物,点胶产生的非甲烷总烃。非甲烷总烃参照执行《区管委会关于印发苏州高新区工业挥发性有机废气整治提升三年行动方案的通知》(苏高新管(2018)74号)中其他涉 VOCs 行业工业企业有组织废气非甲烷总烃排放标准;颗粒物执行《大气污染物综合排放标准》(GB16297-1996)表 2 二级标准。具体见表 1-1。

验收监测评价 标准、标号、级 别、限值

表 1-1 废气排放标准限值

|           | 最高允<br>许排放 | 最高允许<br>率(kg | -排放速<br>g/h) | ,              | 织排放监<br>:度限值  |                                                                  |
|-----------|------------|--------------|--------------|----------------|---------------|------------------------------------------------------------------|
| 污染物       |            |              | 二级           | 监控<br>点        | 浓度<br>(mg/m³) | 依据                                                               |
| 非甲烷<br>总烃 | 70         | 15           | 3.0          | 厂周<br>界外<br>浓度 | 3.2           | 《大气污染物综合排放<br>标准》(GB16297-1996)<br>表 2 二级及苏高新管<br>〔2018〕74 号文件要求 |
| 颗粒物       | 120        | 15           | 3.5          | 最高点            | 1.0           | 《大气污染物综合排放<br>标准》(GB16297-1996)<br>表 2 二级标准                      |

(2) 废水

本次验收阶段与环评时对比,项目废水执行的排放标准没有 新发布或者修订,本次验收时废水污染物执行的标准与环评阶段 保持一致。

本次验收项目为员工生活污水,没有生产废水产生。本次验收项目企业生活污水经市政污水管网排放到苏新新

区污水处理厂处理,其接管执行《污水排入城镇下水道水质标准》 (GB31962-2015);废水经污水厂处理后,尾水排放执行《太湖 地区城镇污水处理厂及重点工业行业主要污染物排放限值》

(DB32/1072-2007), 其中 SS 执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准。项目废水排放标准及污水处理厂排放标准见表 1-2。

表 1-2 废水污染物排放标准限值 (单位: mg/L)

| 排口    | 执行标准                                        | 取值标<br>号级别   | 污染指标               | 单位      | 标准限<br>值 |
|-------|---------------------------------------------|--------------|--------------------|---------|----------|
|       |                                             |              | pН                 | 无量<br>纲 | 6~9      |
| 项目    | 《污水综合排放标<br>准》(GB8978-1996)                 | 表 4 三<br>级标准 | COD                | mg/L    | 500      |
| 排口    |                                             |              | SS                 |         | 400      |
|       | 《污水排入城镇下                                    | 表 1          | NH <sub>3</sub> -N |         | 45       |
|       | 水道水质标准》<br>(GB/T31962-2015)                 | A 级标<br>准    | TP                 | mg/L    | 8        |
|       | 《城镇污水处理厂<br>污染物排放标准》                        | 表1一<br>级A标   | рН                 | 无量<br>纲 | 6~9      |
| 污水    | (GB18918-2002)                              | 准            | SS                 | mg/L    | 10       |
| 处理    | 《太湖地区城镇污                                    |              | COD                |         | 50       |
| 厂排    | 水处理厂及重点工                                    |              | NH <sub>3</sub> -N |         | *5 (8)   |
| ) Jar | 业行业主要水污染<br>物排放限值》<br>(DB32/T1072-2007<br>) | 表 2 标准       | TP                 | mg/L    | 0.5      |

备注:\*括号外数值为水温>12℃时的控制指标,括号内数值为水温 ≤12℃时的控制指标。

自 2021 年 1 月 1 日起,苏州新区污水处理厂主要水污染排放限值需执行《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》(DB321072-2018)表 2 规定限值。

#### (3) 噪声

本次验收阶段与环评时对比,项目噪声执行的排放标准没有 新发布或者修订,本次验收时噪执行的标准与环评阶段保持一 致。

项目西侧滨河路道路红线外 35 米范围内噪声执行《工业企

业厂界环境噪声排放标准》(GB12348-2008)4 类标准,其余厂界执行 2 类标准。具体标准值见表 1-3。

表 1-3 工业企业厂界环境噪声排放标准(单位: dB(A))

| 区域                | 厂界外声环<br>境功能区类<br>别 | 昼间 | 夜间 | 依据                       |
|-------------------|---------------------|----|----|--------------------------|
| 西侧滨河路道路红线外 35 米范围 | 4                   | 70 | 55 | 《工业企业厂<br>界环境噪声排<br>放标准》 |
| 东、南、北侧            | 2                   | 60 | 50 | (GB12348-20<br>08)       |

#### (4) 总量控制指标

根据《国务院关于印发"十三五"生态环境保护规划的通知》 (国发【2016】65号)、本项目的排污特点和江苏省污染物排 放总量控制要求,确定本项目污染物总量控制因子为:

大气污染物总量控制因子: 颗粒物、VOCs 水污染物接管总量控制因子: COD、NH<sub>3</sub>-N、TP 水污染物接管总量考核因子: SS

表 1-4 项目污染物排放总量指标(t/a)

| 种类 |          | 污染物名称 本项目环评批<br>准排放量  |          | 全厂批准量    |          |               |             |                         |               |     |       |   |         |
|----|----------|-----------------------|----------|----------|----------|---------------|-------------|-------------------------|---------------|-----|-------|---|---------|
| 废气 | 有组织      | VOCs(环评中以<br>非甲烷总烃计算) | 0.008    | 2.05325  |          |               |             |                         |               |     |       |   |         |
|    |          | 颗粒物                   | 0.36     | 0.61     |          |               |             |                         |               |     |       |   |         |
|    |          | 废水量                   | 4000     | 26001.6  |          |               |             |                         |               |     |       |   |         |
| 水污 | <b>出</b> | <b>出</b> 、注:定         | <b>出</b> | <b>出</b> | <b>出</b> | <b>上</b> 、汗、汗 | <b>上</b> 沃泛 | <b>上</b><br>上<br>子<br>二 | <b>上</b> 、注、定 | 生活污 | 化学需氧量 | 2 | 12.7688 |
| 染物 | 上 水      | 悬浮物                   | 1.6      | 6.3158   |          |               |             |                         |               |     |       |   |         |
| 朱彻 | 八        | 氨氮                    | 0.18     | 0.6412   |          |               |             |                         |               |     |       |   |         |
|    |          | 总磷                    | 0.032    | 0.12384  |          |               |             |                         |               |     |       |   |         |
|    |          | 一般工业废物                | 0        | 0        |          |               |             |                         |               |     |       |   |         |
| 固体 | 废物       | 危险废物                  | 0        | 0        |          |               |             |                         |               |     |       |   |         |
|    |          | 生活垃圾                  | 0        | 0        |          |               |             |                         |               |     |       |   |         |

#### 表二

#### 工程建设内容:

项目性质: 扩建;

项目地址: 苏州高新区滨河路 1588 号

占地面积:项目占地面积 5760 平方米;

项目实际投资总额: 1600 万元人民币;

项目实际环保投资额: 50 万人民币;

劳动定员: 200人:

工作日班次: 年工作 250 天, 3 班制, 每班 8 小时, 年运行 6000 小时。

建设过程说明:本次验收项目开工建设时间为 2018 年 12 月 20 日,2020 年 03 月 20 日对项目进行调试、投入试生产。项目于 2020 年 03 月 25 日-2020 年 03 月 26 日委托江苏润吴检测服务有限公司进行现场监测。

表 2-1 建设项目与实际建设内容一览表

| 序号 | 产品名称      | 环评设计生产<br>能力(万个/年) | 实际生产能<br>力(万个/年) | 变化情况<br>(万个/年) | 年运行<br>时数 |
|----|-----------|--------------------|------------------|----------------|-----------|
| 1  | 空气净化器用过滤器 | 800                | 800              | 0              | 6000h     |

原辅材料消耗及水平衡:

表 2-2 验收项目原辅材料明细汇总表

|           |             |     | 年耗量 |      |          |        |
|-----------|-------------|-----|-----|------|----------|--------|
| 名称        | 重要组分、规格     | 环评阶 | 实际建 | 变化情  | 单位       | 包装规格   |
|           |             | 段   | 设   | 况    |          |        |
| 活性炭颗<br>粒 | 活性炭(8-12 目) | 800 | 800 | 无    | 吨        | 颗粒,桶装  |
| 高效滤材      | 玻璃纤维        | 360 | 360 | 无    | 万平方<br>米 | 固态,卷   |
| 化纤滤材      | 化纤          | 900 | 900 | 无    | 万平方<br>米 | 固态,卷   |
| 过滤器护<br>网 | 塑料          | 30  | 30  | 无    | 万平方<br>米 | 固态,卷   |
| 塑料零件      | 塑料          | 800 | 800 | 无    | 万件       | 固体,周转箱 |
| 热熔胶       | 树脂 (聚烯烃类)   | 200 | 200 | 无    | 吨        | 固体,袋装  |
| 甲醛        | 甲醛          | 0.6 | 0   | -0.6 | kg       | 液体, 瓶装 |
| 甲苯        | 甲苯          | 0.6 | 0   | -0.6 | kg       | 液体,瓶装  |

注: 甲醛、甲苯为测试舱测试产品吸附性能所用药剂,已取消。

|        | 表 2-3 建设项目主要设备表            |              |                  |     |       |     |       |  |  |  |  |  |  |
|--------|----------------------------|--------------|------------------|-----|-------|-----|-------|--|--|--|--|--|--|
| *      |                            |              |                  | 数   | 量(台/套 | :)  |       |  |  |  |  |  |  |
| 类<br>型 | 名                          | <b>吕称</b>    | 规模型号             | 环评阶 | 实际建   | 变化情 | 备注    |  |  |  |  |  |  |
| 至      |                            |              |                  | 段   | 设     | 况   |       |  |  |  |  |  |  |
|        | 折                          | 纸机           | TAG, Fengchen    | 3   | 3     | /   | 折纸    |  |  |  |  |  |  |
| 件      | 焊                          | 接机           | Herrmann         | 8   | 8     | /   | 超声波焊接 |  |  |  |  |  |  |
| 生产     |                            | 全自动灌碳<br>机   | ASA              | 6   | 6     | /   | 灌装    |  |  |  |  |  |  |
| 设<br>备 |                            | 全自动机械<br>胶系统 | ASA/墨佳           | 4   | 4     | /   | 点胶    |  |  |  |  |  |  |
|        | 检测                         | 设备           | Topas            | 3   | 3     | /   | 检查    |  |  |  |  |  |  |
| 废气     | 废     环评废       气处理     设施 | 布袋除尘<br>器    | 风量为<br>13600m³/h | 1   | 1     | /   | /     |  |  |  |  |  |  |
| 处      |                            | 活性炭吸<br>附装置  | 风量为 3000m³/h     | 1   | 1     | /   | /     |  |  |  |  |  |  |

#### 用水来源及水平衡

环评中,项目用水为员工生活用水,没有生产废水。

项目新增员工 200 人,员工人均用水 100L/d,年工作时间为 250 天,则项目每年用水量为 5000t/a,产物系数为 0.8,则产生生活污水 4000t/a,污水中主要污染物为 pH、COD、SS、氨氮、TP。

项目水平衡如图 2-1 所示。

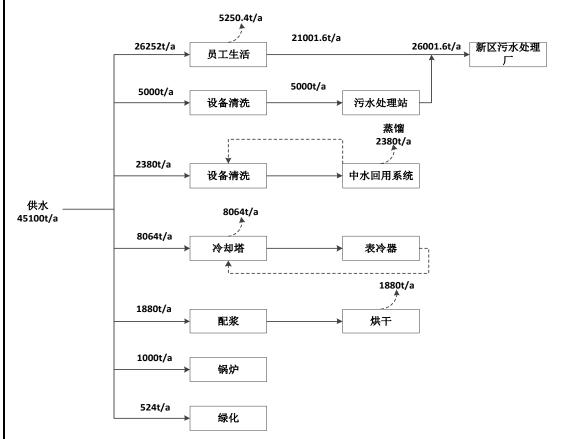



图 2-1 验收项目环评水平衡图

#### 实际建设情况:

实际建设用水情况与环评相同,仅有员工生活用水,未发生改变。

主要工艺流程及产物环节(附处理工艺流程图,标出产污节点) G1 G1 G2 加入灌炭 超声波焊 活性炭 拆包装 灌装 性能测试 包装 颗粒 S2 s'ı S1 外购的产品框

图 2-2 活性炭过滤器生产工艺流程图

#### 工艺流程简述:

- 1.拆包装:项目采购的活性炭颗粒采用桶装,使用时需要对包装进行拆除,产生废包装材料 S1:
- 2.灌装: 先将活性炭颗粒加入灌碳机,在通过灌碳机将活性炭灌入外购的产品框中,本项目灌装机分为全自动灌装机和半自动灌装机。此段工序产生灌装废气 G1,主要是活性炭颗粒;
- 3.超声波焊接:本项目使用超声波焊接机对塑料网框进行密封,超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。当超声波停止作用后,让压力持续几秒钟,使其凝固成型,达到焊接的目的。由于超声波焊接局部加热,且工作时间非常短,因此基本不会有废气产生;

#### 4.性能测试:

环评:在专用的测试舱内进行性能测试,根据客户的要求,测试的项目可能是甲醛、甲苯、颗粒物等测试项目,测试前将一定量的被测试废气注入密闭的测试舱内,一般是一次性注入总量不超过 1500mg,然后待舱内气体混合均匀,开启舱内预放的空气净化器,测量空气净化器的去除效果。此过程产生废过滤材料 S2;

实际建设:企业仅对产品进行密封性测试,不再测试产品对甲醛、甲苯、颗粒物的吸附效果,因此不再产生测试废气。

5.包装:对产品进行包装,待售,此过程产生废包装材料 S1。

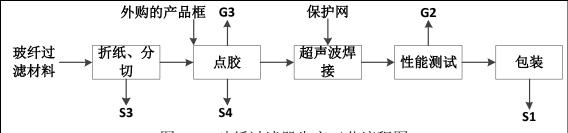



图 2-3 玻纤过滤器生产工艺流程图

#### 工艺流程简述:

- 1.折纸、分切:外购的玻璃纤维材料通过折纸机折成褶皱状,再分切成需要的大小,此过程产生玻璃纤维边角料 S3;
- 2.点胶:通过点胶机在外购的产品框上进行点胶,工作温度约为 180℃,通过点胶将玻璃纤维滤材和产品框组装在一起,此过程,热熔胶被加热会有少量有机废气 G3 产生,以非甲烷总烃计,还会有少量废胶 S4 产生;
  - 3.超声波焊接:通过超声波焊接,将保护网和产品框组装在一起;
  - 4.性能测试:同上;
  - 5.包装:对产品进行包装,待售,此过程产生废包装材料 S1。

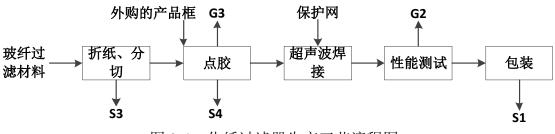



图 2-4 化纤过滤器生产工艺流程图

#### 工艺流程简述:

- 1.折纸、分切:外购的化纤材料通过折纸机折成褶皱状,再分切成需要的大小,此过程产生化纤边角料 S5:
- 2.点胶:通过点胶机在外购的产品框上进行点胶,工作温度约为 170℃,通过点胶将化纤滤材和产品框组装在一起,此过程,热熔胶被加热会有少量有机废气 G3 产生,以非甲烷总烃计,产生废胶 S4;
  - 3.性能测试:同上;
  - 4.包装:对产品进行包装,待售,此过程产生废包装材料 S1。

#### 表三

主要污染源、污染物处理和排放(附处理流程示意图,标出废水、废气、厂界 噪声监测点位)

#### (1) 废水

根据环评及批复根据环评及批复,项目实行雨污分流,无生产废水产生,排放的废水为生活污水,生活污水主要污染物为 pH、COD、SS、NH<sub>3</sub>-N、TP,废水接入苏州新区污水处理厂,处理达标后尾水排入京杭运河。本项目废水流向示意图见图 3-1,废水排放情况如表 3-1 所示:

表 3-1 废水排放情况一览表

| 监 | 则点位 | 污染源<br>工段 | 污染物名称     | 排放规<br>律 | 治理措<br>施 | 排放去向     |
|---|-----|-----------|-----------|----------|----------|----------|
| * | 废水总 | 生活污       | pH、化学需氧量、 | 间歇排      | 市政污      | 苏州新区污水处理 |
|   | 排口  | 水         | SS、氨氮、总磷  | 放        | 水管网      | 厂        |

图 3-1 项目废水流向及监测点位示意图



#### (2) 废气

本次验收项目的废气主要为灌炭过程产生的粉尘,活性炭灌装废气收集处理后通过 15 米高的 FQ-004810 排气筒排放。点胶废气净化车间内通过集气罩收集,经活性炭吸附处理后通过 15 米高的 FQ-004811 排气筒排放。活性炭灌装过程中未能收集到的少量颗粒物,在车间内无组织排放。

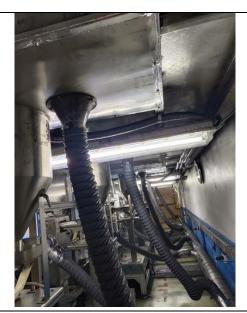
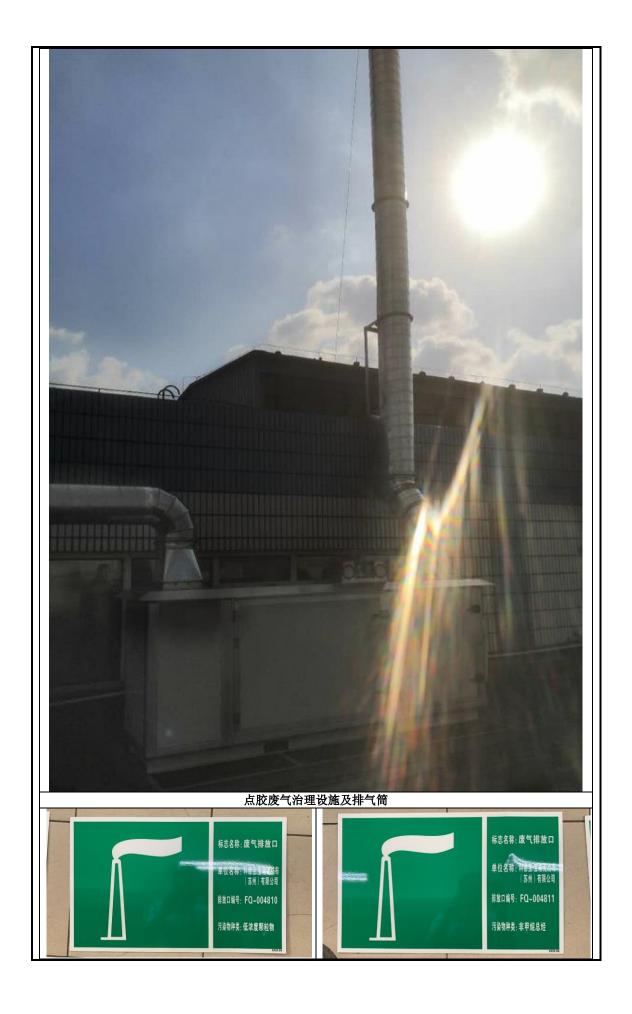

废气污染源、污染物处理和排放情况具体见表 3-2。

表 3-2 主要污染物的产生、处理和排放情况

| 排气                | 废气      | 排放 | 主要污       | Ś                                   | <b></b>                                             |          |
|-------------------|---------|----|-----------|-------------------------------------|-----------------------------------------------------|----------|
| 筒编<br>号           | 波<br>编号 | 工序 | 染物        | 环评报告及批复要求                           | 实际建设情况                                              | 变化 情况    |
| FQ-0<br>0481<br>0 | G1      | 灌装 | 颗粒物       | 经布袋除尘器处理后<br>通过 15 米高的 14#排<br>气筒排放 | 经布袋除尘器处理后<br>通过 15 米高的<br>FQ-004810 排气筒排<br>放       | 排气筒编号根   |
|                   | G2      | 测试 | 非甲烷<br>总烃 |                                     | 取消废气吸附效果测                                           | 据排<br>活许 |
| FQ-0<br>0481<br>1 | G3      | 点胶 | 非甲烷总烃     | 经活性炭吸附处理后<br>通过 15 米高的 15#排<br>气筒排放 | 试,点胶废气经活性<br>炭吸附处理后通过 15<br>米高的 FQ-004811 排<br>气筒排放 | 可进 行编 号  |
| /                 | G1      | 灌装 | 颗粒物       | 未能收集到的部分车<br>间内无组织排放                | 未能收集到的部分车<br>间内无组织排放                                | /        |

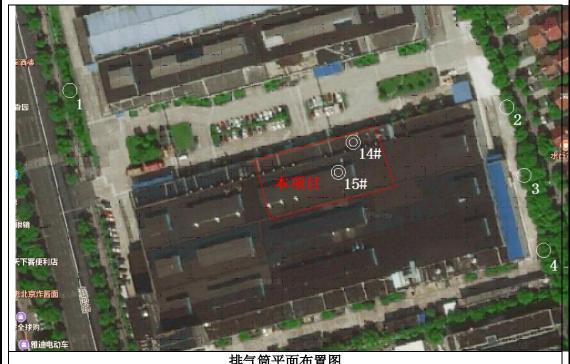
废气处理装置及排气筒设置情况如图 3-3 所示。

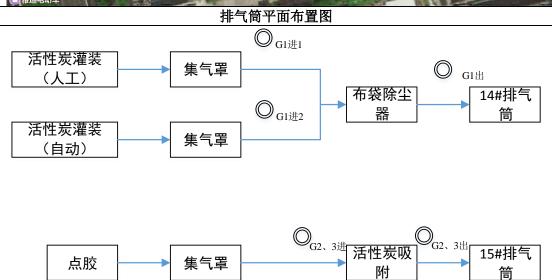




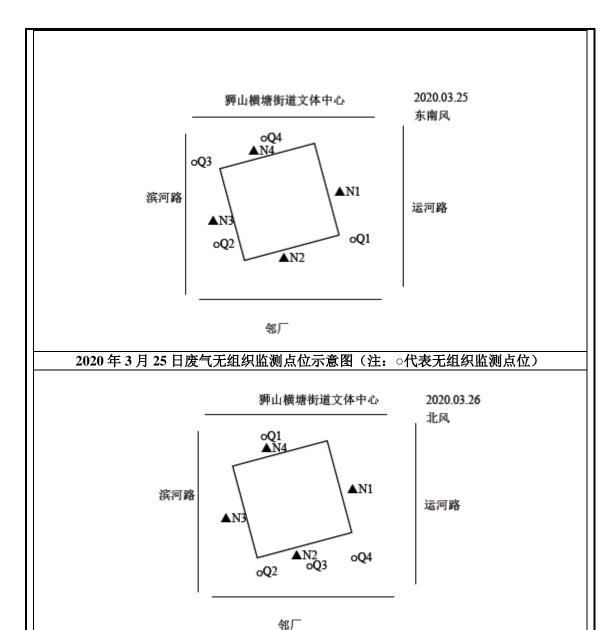

灌装废气收集装置及管道

-13







#### 图 3-3 废气处理设施及排气筒

废气有组织监测点位及无组织监测点位如图 3-4、3-5 所示。





废气有组织监测点位图 (注: 〇 代表有组织废气监测点位)



2020年3月26日废气无组织监测点位示意图(注:○代表无组织监测点位)

图 3-5 无组织废气监测点位示意图

#### (3) 噪声

本次验收项目噪声源主要为折纸机、超声波焊接机、灌装机、点胶机以及废气处理设施风机等设备运行时产生的噪声,源强一般在70~85dB(A)范围内。通过安装基础减震等降噪措施,并利用墙壁、绿化等隔声作用,项目噪声污染防治措施情况如表 3-3 所示。

表 3-3 项目噪声情况一览表

| 设备名称 | 源强度 dB(A)     |      | 治理措施   |      |
|------|---------------|------|--------|------|
| 设备名称 | /sc/国/文 UD(A) | 环评要求 | 实际治理措施 | 变化情况 |

| 折纸机、超声波焊接机、灌装机、点胶机以及废气处理设施风机 | 合理布局、选用低<br>噪声设备,采取有<br>效减振、隔声、消<br>音等降噪措施 | 合理布局、选用低<br>噪声设备,采取有<br>效减振、隔声、消<br>音等降噪措施 | 不变 |
|------------------------------|--------------------------------------------|--------------------------------------------|----|
|------------------------------|--------------------------------------------|--------------------------------------------|----|

噪声监测点位见上图。

#### (4) 固体废物

项目一般固废为拆包装产生的废包装材料 1t/a, 玻璃纤维、化纤分切过程产生的废玻璃纤维和废化纤,产生量均为 10t/a。

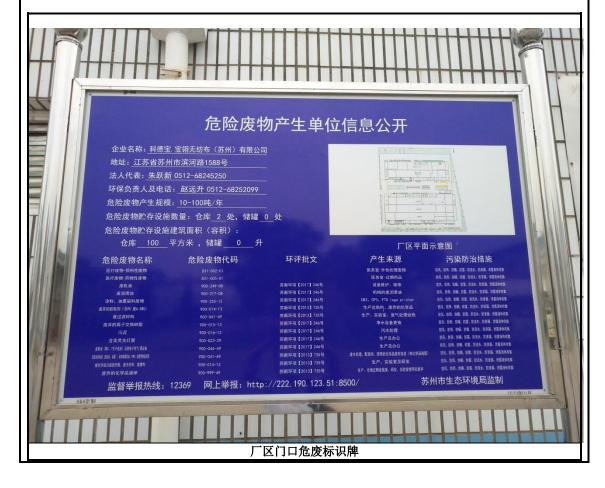
项目点胶过程产生少量废胶,产生量为 2t/a; 购入的甲醛、甲苯使用量很少,产生微量的废包装容器 0.001t/a; 点胶废气治理产生废活性炭 0.5t/a。

员工生活产生生活垃圾约 28t/a。

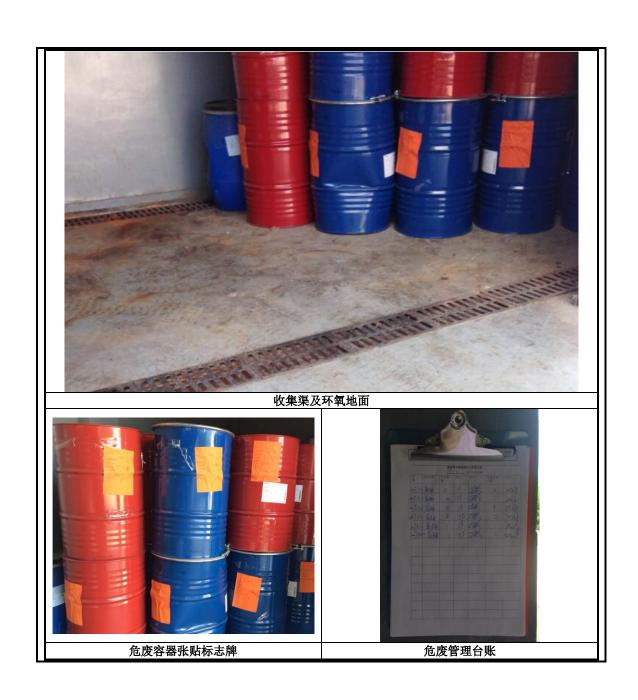
本项目产生的固体废物主要包括危险固废、一般工业固废和生活垃圾各种固体废物的种类及去向见表 3-4。

表 3-4 验收项目固体废物种类及去向表

|        |           |          | 产生工      |    | 主要成             | 危险特  | 废物                  |                          | 佶         | 算产生量      | t/a | 利用处理                       |
|--------|-----------|----------|----------|----|-----------------|------|---------------------|--------------------------|-----------|-----------|-----|----------------------------|
| 序<br>号 | 固废名称      | 属性       | 序        | 形态 | 分               | 性性   | 类别                  | 废物代码                     | 环评估<br>计量 | 实际产<br>生量 | 变化量 | 方式                         |
| 1      | 废包装       | 一般固      | 生产过<br>程 | 固态 | 塑料、纸            | /    | 99                  | /                        | 1         | 1         | 0   | 苏州卡美<br>尔环保服               |
| 2      | 废玻璃纤<br>维 | 废        | 分切       | 固态 | 玻璃纤<br>维        | /    | 99                  | /                        | 10        | 10        | 0   | 多有限公<br>司                  |
| 3      | 废化纤       |          | 分切       | 固态 | 化纤              | /    | 99                  | /                        | 10        | 10        | 0   | HJ                         |
| 4      | 废胶        |          | 点胶       | 固态 | 树脂类             | Т    | 有机 树脂 类物            | HW13<br>(900-014-1<br>3) | 2         | 2         | 0   | 苏州新区<br>环保服务<br>中心有限<br>公司 |
| 5      | 废包装容<br>器 | 危险废<br>物 | 生产过<br>程 | 固态 | 甲醛、甲苯           | T/In | 其他废物                | HW49<br>(900-041-4<br>9) | 0.001     | 0.001     | 0   | 苏州新区<br>环保服务<br>中心有限<br>公司 |
| 6      | 废活性炭      |          | 废气治 理    | 固态 | 活性<br>炭、有<br>机物 | T/In | 有机<br>树脂<br>类废<br>物 | HW13<br>(900-016-1<br>3) | 0.5       | 0.5       | 0   | 苏州新区<br>环保服务<br>中心有限<br>公司 |
| 7      | 生活垃圾      | 生活垃<br>圾 | 生活       | 固  | 纸类等             | /    | 99                  | /                        | 28        | 28        | 0   | 苏州市时<br>进市政服<br>务有限公<br>司  |


企业设置了一个 100m² 的危险废物仓库,危废仓库设在厂房的东南侧;危废仓库为独栋建筑,由实体墙建成,能够防风、防雨、防渗;地面设置了环氧地坪,能够防腐防渗、收集泄漏废液;各类危险废物分类存放,并且张贴了标签,建立了危废台账制度;危废仓库外张贴了危废标志,张贴了管理制度、管理人员等;

危险废物仓库加锁(电动卷帘门),钥匙由专人保管,危险废物仓库的设置符合《危险废物贮存污染控制标准》(GB18597-2001)及2013年修改单(公告2013年第36号)有关要求。


企业设置了一个一般固废仓库,位于危废仓库的东侧,为两个单独的集装箱,能够防风、防雨;基本符合一般工业固体废物贮存符合《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及 2013 年修改单(公告 2013 年第 36 号)。

危险废物暂存仓库建设情况如图 3-7 所示。

一般固体废物周转场所建设情况如图 3-8 所示。











危废仓库内视频监控 2





图 3-7 危险废物暂存仓库建设现状



一般固体废物仓库

图 3-8 一般固体废物仓库建设现状

— 23 —

#### 表四

#### 1、项目变动情况

项目实际建设过程中,建成产能与原环评及审批文件内容一致,本项目原环评生产工艺后端性能测试环节包括过滤产品密封性测试、产品过滤效果测试。实际建设过程根据生产委托商产品要求,只进行产品密封性测试,取消过滤效果测试环节,项目原辅料取消测试用甲醛、甲苯,实际生产废气仅灌碳废气、点胶废气,不再有测试废气产生。

具体如下:

#### 1、废气源:

- ①点胶废气:通过点胶机在外购的产品框上进行点胶,工作温度约为 180℃,通过点胶将玻璃纤维滤材和产品框组装在一起,此过程,热熔胶被加热会有少量有机废气 G3 产生,以非甲烷总烃计。
- ②性能测试废气:在专用的测试舱内进行性能测试,根据客户的要求,测试的项目可能是甲醛、甲苯、颗粒物等测试项目,测试前将一定量的被测试废气注入密闭的测试舱内,一般是一次性注入总量不超过1500mg,然后待舱内气体混合均匀,开启舱内预放的空气净化器,测量空气净化器的去除效果。

实际建设:产品测试仅进行产品密封性能测试,不再有对产品吸附甲醛、甲苯、颗粒物等测试内容,点胶废气不变。

废气收集、处理方式不变。

环评阶段与验收阶段废气环保设施变化情况如表 4-1 所示。

| 排放   | 主要污染物             |                                              | 处理设施                           | 排气筒设置情况               |          |       |         |
|------|-------------------|----------------------------------------------|--------------------------------|-----------------------|----------|-------|---------|
| 工序   |                   | 环评阶段                                         | 验收阶段                           | 变化情况                  | 环评阶<br>段 | 验收阶段  | 变化情况    |
| 点胶   | 非甲烷<br>总烃         | 采用活性炭吸<br>附处理,风量<br>为 3000 m <sup>3</sup> /h | 采用活性炭吸<br>附处理,风量为<br>1500 m³/h | 测试过程不<br>再产生废         |          | 1根15米 | 排气筒无 变化 |
| 性能测试 | 甲苯、<br>甲醛、<br>颗粒物 |                                              | 不再进行吸附<br>能力测试                 | 再产生废<br>气,仅包括<br>点胶废气 |          | 高的排气筒 |         |

表 4-1 废气环保设施及排气筒的变化情况

#### 2、变化原因:

在环评阶段,企业根据生产经验配套了性能测试部分,建设内容包括对产品 吸附能力的检测和密封性能检测。实际建设过程中,原材料由客户指定,本公司 仅负责对客户指定的原材料进行加工,确保产品密封性能满足要求,对各污染物

的吸附能力由于原材料是客户指定的,因此不再考虑吸附能力,因此本项目取消了对产品吸附能力的测试。

#### 3、变化内容污染源强及环境影响分析

#### (1) 废气

本次验收项目变动为减少了测试废气,污染物的收集、处理方式不发生变化。 根据验收检测报告的结果,排气筒污染物的排放浓度、速率均低于环评预估量,可以做到达标排放,总量也满足要求,总体上污染物是减少的,因此本次变化,不会增加对大气环境的影响。

#### (2) 废水

不涉及废水变化。

#### (3) 噪声

由于测试项目减少,风机风量减少,噪声降低。根据验收检测报告的监测结果,西侧厂界噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)4类标准,其余厂界满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准。

#### (4) 固废

发生变化后,不再产生废过滤材料,减少废过滤材料 1.05t/a。

#### (5) 污染物排放总量

发生变化以后,废气有组织排放、废水排放、固废排放总量与环评阶段对比, 非甲烷总烃排放量减少了 0.006kg/a。

#### 3、变动内容分析及结论

对照《关于印发环评管理中部分行业建设项目重大变动清单的通知》(环办(2015)52号)、《关于加强建设项目重大变动环评管理的通知》(苏环办(2015)256号)、本次验收项目变动内容分析如表 4-2 所示。

表 4-2 项目变动内容分析表

| 序号 | 类别 | 原环评情况 | 实际建设情况 | 变化内容 | 苏环办<br>【2015】256<br>号重大变动<br>清单 | 重大变<br>化判定 |
|----|----|-------|--------|------|---------------------------------|------------|
|----|----|-------|--------|------|---------------------------------|------------|

| 1 | 废气 | 点胶废气、测试<br>废气净化车间<br>内通过集气罩<br>收集,经活性炭<br>吸附处理后通<br>过 15 米高的<br>FQ-004811 排<br>气筒排放。 | 点胶废气废气净<br>化车间内通过集<br>气罩收集,经活性<br>炭吸附处理后通<br>过 15 米高的<br>FQ-004811 排气筒<br>排放。 | 不再产<br>生测试<br>废气 | 主要型 原 型类 他 和 且 污 污 量 型 类 型 类 型 生 技 导 染 为 国 污 污 量 增 或 放 一 数 要 增 或 放 一 数 更 为 。 | 发动污的量少属大变,物放不重化 |
|---|----|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------|-----------------|
|---|----|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------|-----------------|

**结论:** 对照《关于印发环评管理中部分行业建设项目重大变动清单的通知》(环办(2015)52号)、《关于加强建设项目重大变动环评管理的通知》(苏环办(2015)256号)要求,项目变动内容不属于重大变动,可纳入本次竣工环境保护验收管理。

#### 表五

#### 建设项目环境影响报告表主要结论及审批部门审批决定:

#### ◆ 环境影响报告表主要结论

#### 1、工程概况

科德宝·宝翎无纺布(苏州)有限公司位于高新区滨河路 1588 号,在公司现有厂房内扩建本项目,总投资 1600 万元,环保投资 50 万元,占总投资的 3.1%,建成后年产空气净化器用过滤器 800 万个。本项目新增员工 200 人,三班制,每班 8 小时,年工作 250 天,年工作 6000 小时,餐饮依托公司原有餐厅,不新增设施。

#### 2、项目建设与地方规划相容性:

根据《苏州高新区中心城区控制性详细规划》,本项目所在地用地性质为工业用地,项目选址合理;项目主要从事空气净化器用过滤器制造,符合高新区产业发展方向,符合地方规划。

本项目属于太湖三级保护区,仅有员工生活污水排放,没有生产废水,符合 《江苏省太湖水污染防治条例》相关要求。

对照《江苏省生态红线区域划分与保护》(苏政发[2013]113),本项目厂界距离枫桥风景名胜区 320m,不在以上保护区管控区范围内,因此本项目建设与《江苏省生态红线区域划分与保护》相符。

项目设置的卫生防护距离范围内无居民、学校等敏感目标。

因此,本项目选址基本合理,符合当地总体规划的发展需要。

#### 3、项目产品、生产工艺与产业政策相容性:

本项目行业代码 C3463, 行业类别: 气体、液体分离及纯净设备制造。

本项目未被列入《产业结构调整指导目录(2011年本)》(2013年修正版)和《江苏省工业和信息产业结构调整指导目录(2012年本)》中的限制类和禁止类,也未被列入《苏州市产业发展导向目录(2007年本)》中的限制类、禁止类和淘汰类,属于允许类项目;对照《省政府办公厅转发省经济和信息化委省发展改革委江苏省工业和信息产业结构调整限制淘汰目录和能耗限额的通知》(苏政办发[2015]118号),本项目不在文中所列限制类和淘汰类,项目生产产品未在文中所列有能耗限额产品中,符合要求。对照《外商投资产业指导目录》(2017年修订),不在鼓励类和禁止类中,属于允许类项目。因此,本项目符

合国家和地方的相关产业政策。

根据《省政府办公厅关于公布江苏省太湖流域三级保护区范围的通知》(苏政办发(2012)221号)文件,本项目距离太湖12.6公里,属于太湖三级保护区。本项目没有生产废水;生活污水接入市政污水管网,由苏州新区污水处理厂集中处理,处理达标后排入京杭运河,不属于《江苏省太湖水污染防治条例》中第四十五、第四十六条规定中的禁止行为行列。

#### 4、项目周围环境质量现状

项目地所在区域大气达到《环境空气质量标准》(GB3095-2012)二级标准; 京杭运河高新区段的水质达到《江苏省地面水环境功能类别划分》2020 年IV类 水质目标要求; 项目地西侧滨河路道路红线 35 米范围内噪声达到《声环境质量标准》(GB3096-2008)4a 类标准,其余区域可达到《声环境质量标准》(GB3096-2008)2 类标准。

#### 5、项目建成后对周围环境影响程度以及达标排放情况:

#### (1) 废气

本项目生产过程中,活性炭灌装废气收集处理后通过 15 米高的 FQ-004810 排气筒排放。颗粒物有组织排放量为 0.36t/a,风量为 13600 $m^3$ /h,排放浓度为 4.41 $mg/m^3 \le 120mg/m^3$ ,排放速率为 0.06 $kg/h \le 3.5kg/h$ ,其排放速率及排放浓度 均达到《大气污染物综合排放标准》(GB 16297-1996)表 2 二级标准;

点胶废气废气净化车间内通过集气罩收集,经活性炭吸附处理后通过 15 米 高的 FQ-004811 排气筒排放。非甲烷总烃有组织排放量为 0.008t/a,排放浓度为 0.67mg/m³≤70mg/m³,排放速率为 0.00134kg/h≤3.0kg/h,其排放速率及排放浓度均达到《大气污染物综合排放标准》(DB31/933-2015)表 1 标准。

#### (2) 废水

本项目厂区管网采用雨、污分流系统:生活污水经苏州新区污水处理厂处理 达标后尾水排入京杭运河。

本项目营运期职工生活污水产生量为 4000t/a, 主要污染物为 COD、SS、NH3-N、TP等。生活污水由苏州新区污水处理厂处理达《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准和《太湖地区城镇污水处理厂及重点行业主要水污染物排放限值》(DB32/1072-2007)中表 1 的相应标准后排入京杭运河,预计对项目周边水体水质影响较小,可维持水环境现状。

#### (3) 噪声

本项目噪声源主要为折纸机、超声波焊接机、灌装机、点胶机以及废气处理设施风机等设备运行时产生的噪声,源强在70~85dB(A)范围内。按照工业设备安装的有关规范,合理厂平面布局,对震动设备进行减震;通过利用墙壁、绿化等隔声作用,以降低其噪声对周围环境的影响。通过以上措施,预计西侧厂界噪声可满足《工业企业厂界噪声标准》(GB12348-2008)表1中的4类标准,其余厂界可满足《工业企业厂界噪声标准》(GB12348-2008)表1中的2类标准排放,对周围环境影响较小。

#### (4) 固废

本项目废包装材料、废玻璃纤维、废化纤、废热熔胶包装属于一般固废,由专门的物资回收单位进行回收再利用;废过滤材料、废包装桶、废活性炭属于危险废物,委托有资质单位处置;员工产生的办公、生活垃圾,在厂区内收集后,由环卫部门统一处置。本项目固废零排放,对周围环境不产生影响,也不会产生二次污染。

#### 6、卫生防护距离

现有 CB6 项目生产线以所在车间为起点设置 50m 卫生防护距离,工业板式/ 盒式过滤器项目以所在净化车间为起点设置 50m 卫生防护距离,CP3 项目以印 花机为起点设置 100m 卫生防护距离(建设过程中)。

本项目建设后,点胶工序在工业板式/盒式过滤器项目以所在净化车间内进行生产,同时对净化车间进行改造,使其废气不再无组织排放,因此不再以净化车间为起点设置卫生防护距离,本项目以灌装车间为起点,设置 50 米卫生防护距离。

#### 7、项目污染物总量控制方案:

#### (1) 总量控制因子

本项目大气污染物总量控制因子为颗粒物、VOCs;固体废弃物零排放;水污染物总量控制因子:COD、氨氮;水污染物排放考核因子为:SS、总磷。

#### (2) 总量平衡途径

本项目废水污染物纳入苏州新区污水处理厂总量额度内; 大气污染物在苏州 市高新区范围内平衡; 固体废物零排放。

#### 8、清洁生产水平

本项目主要原辅材料选择符合国家清洁生产要求;采用的生产设备、生产工艺较为成熟;项目"三废"经有效处理后可以达标排放,固体废物零排放,符合清洁生产的要求。

综上所述,拟建项目的建设满足国家产业政策的要求,项目选址合理,利用已建厂房进行生产,土地证、房产证等手续齐全。项目建成后所有污染物达标排放后,周围环境质量基本能够维持现状。经落实本环评提出的污染防治措施后,"三废"产生量较少,对周围环境的影响较小。因此,本项目从环保的角度看,该项目的建设是可行的。

#### 对策建议和要求:

针对本项目所在地情况及工艺,提出以下对策、建议和要求:

- 1、本次环评表的评价结论是以科德宝·宝翎无纺布(苏州)有限公司所申报的上述产品的原辅材料种类、用量、生产工艺及污染物防治对策为基础的,如果该公司扩大生产规模,或者原材料种类用量、生产工艺及污染物防治对策等有所变化时,应由建设单位按环境保护法规的要求另行申报。
  - 2、维护好厂区原有的绿化。
- 3、项目投产后产生的固废应有专人负责,及时的收集,妥善保存于固定的 暂存处及时清运,危险废物去向应明确,不得随意处置;
  - 4、做好废气治理设施的运行维护,确保其正常工作;
  - 5、严格执行"三同时"制度。

#### ◆ 审批部门审批决定

企业于 2018 年 11 月 28 日获得苏州国家高新技术产业开发区环境保护局关于本项目的环保审批意见——苏新环项[2018]255 号,详见附件一。

| 序号 | 环评批复要求                                                                       | 落实情况                                                           | 备注              |
|----|------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|
| 1  | 根据报告表评价结论,经我局研究,<br>同意改项目在苏州高新区滨河路<br>1588 号建设,项目内容是年增产空气<br>净化器用过滤器 800 万个  | 本项目位于苏州高新区滨河路<br>1588号,实际建设内容为年增产<br>空气净化器用过滤器800万个            | 満足<br>球災<br>批要求 |
| 2  | 项目工程设计、建设和环境管理中,<br>必须切实落实《报告表》中提出的各<br>种环保要求和污染防治措施、"以新<br>带老"措施,确保各污染物达标排放 | 本项目落实了环评报告表中提出的各项污染防治措施,根据验收检测报告——RW200401015,各污染物均能达标排放,具体如下: | 满足<br>环复<br>批要求 |
| 3  | 厂区实行雨 污分流 该项目无生产                                                             | 厂区雨污分流 木项目仅有吊工                                                 | 沸見              |

表 5-1 项目环评批复要求落实情况对照表

|   | 废水,生活污水排入市政污水管网,污水排放执行《污水综合排放标准》(GB8978-1996)表4三级标准,生活污水氨氮、总磷执行《污水排入城镇下水道水质标准》(GB/T31962-2015)中相应标准加强废气排放管理,该项目生产废气                                                                                                        | 生活污水,没有生产废水;经验收监测,废水总排口各污染物满足《污水综合排放标准》<br>(GB8978-1996)表4三级标准及《污水排入城镇下水道水质标准》(GB/T31962-2015)表1标准,能够达标排放本项目有机废气经收集处理后                                                                                  | 环评<br>批复<br>要求<br>   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 4 | 加强废气排放管理,该项目生厂废气须经处理后达标排放。非甲烷总烃有组织排放浓度执行 70mg/m³,无组织排放监控浓度执行《大气污染物综合排放标准》(GB16297-1996)表 2 二标准限值的 80%;颗粒物排放执行《大气污染物综合排放标准》(GB16297-1996)表 2 标准。严格执行《报告表》中提出的卫生防护距离。加强废气污染治理设施的运行维护与保养,严格执行更换活性炭等频率的要求,并做好相应更换记录,确保其正常有效运行。 | 通过 15 米高的 FQ-004811 排气筒排放,经验收检测,排气筒中非甲烷总烃排放浓度小于 70 mg/m³;活性炭灌装粉尘处理后经 15 米高的 FQ-004810 排气筒排放,其排放速率及浓度满足《大气污染物综合排放标准》(GB16297-1996)表 2 二级标准。项目厂界颗粒物、非甲烷总烃无组织浓度满足标准要求,项目以生产车间为界,设置 50m 卫生防护距离,改距离内无环境敏感目标。 | 满足<br>环复<br>要求       |
| 5 | 采取切实有效的隔音降噪措施,确保本项目厂界噪声排放达到《工业企业厂界环境噪声排放标准》(GB12348-2008)2 类标准,昼间≤60dB(A)。西厂界噪声排放执行《工业企业厂界环境噪声排放标准》(GB12348-2008)4 类标准,昼间≤70dB(A),夜间≤55dB(A)。                                                                              | 本项目通过采取隔音降噪措施,使厂界噪声达标。经验收检测,东、南、北侧厂界噪声排放达到《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准;西侧厂界噪声排放达到《工业企业厂界环境噪声排放标准》(GB12348-2008)4类标准。                                                                              | 满足<br>环<br>批复<br>要求  |
| 6 | 该项目产生的固体废物须分类收集<br>妥善处置或利用,不得排放。危险废<br>物须委托有资质单位进行处理,并执<br>行危险废物转移联单制度。                                                                                                                                                    | 本项目固体废物分类收集;危险<br>废物委托苏州新区环保服务中<br>心有限公司处置;生活垃圾由苏<br>州市时进市政服务有限公司代<br>为清运。                                                                                                                              | 满足<br>环评<br>批复<br>要求 |
| 7 | 采取有效的环境风险防范措施和应<br>急措施,制定完善《突发环境事件应<br>急预案》并报我局备案,建立完善的<br>监控、监测、应急及报警系统,防止<br>各类污染事故发生。                                                                                                                                   | 科德宝·宝翎无纺布(苏州)有限公司已经编制了突发环境事件应急预案,有效期至2020年12月,目前已经与第三方服务公司签订了修订突发环境事件应急预案的合同。                                                                                                                           | 满足<br>环状复<br>要求      |
| 8 | 排污口设置按《江苏省排污口设置及规范化整理管理办法》(苏环控[1997]122号文)的要求执行。各类污染物排放口设置监测采样口并安装环保标志牌。要求你公司积极推广循环经理理念,实施清洁生产措施,贯彻 ISO14000 标准。                                                                                                           | 项目废气处理设施设置了废气<br>进口、处理的采样口;废水总排<br>口可以采样;各污染物排放口均<br>安装了环保标志牌。                                                                                                                                          | 满足<br>环<br>批复<br>要求  |
| 9 | 建设单位是该建设项目环境信息公<br>开的主体,须自收到本文后将该项目                                                                                                                                                                                        | 本项目在申报前进行了网上公<br>示                                                                                                                                                                                      | 满足<br>环评             |

|    | 环境影响报告表的最终版本予以公<br>开。同时应按照《建设项目环境影响<br>评价信息公开机制方案》(环发<br>[2015]162 号)做好开工前、施工期<br>和建成后的信息公开工作。 |                                                         | 批复<br>要求             |
|----|------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|
| 10 | 项目的环保设施必须与主体工程同时建成,经验收合格后方可正式生产。                                                               | 严格执行"三同时"制度,同步建<br>设各污染物防治措施。                           | 满足<br>环评<br>批复<br>要求 |
| 11 | 本批复自审批之日起有效期5年。本项目5年后方开工建设或项目的性质、规模、地点、采用的生产工艺或拟采用的防止污染措施发生重大变化的,你公司须重新报批该项目环境影响评价文件。          | 本项目于 2018 年 11 月 28 日取得批文,于 2018 年 12 月开工建设,尚在 5 年有效期内。 | 满足<br>环评<br>批复<br>要求 |

# 表六

## 验收监测质量保证及质量控制:

## 1、监测分析方法

表 6-1 监测分析方法

| 类别       | 监测因子         |                | 分析方法及方法来源                                           |  |  |  |  |
|----------|--------------|----------------|-----------------------------------------------------|--|--|--|--|
|          | pH 值         |                | 《便携式 PH 计法<水和废水监测分析方法>》((第四版)国家环境保护总局(2002)3.1.6.2) |  |  |  |  |
| 废水       | 化学           | 需氧量            | 《水质 化学需氧量的测定 重铬酸盐法》(HJ828-2017)                     |  |  |  |  |
| 及小       | 悬            | 浮物             | 《水质 悬浮物的测定 重量法》(GB/T 11901-1989)                    |  |  |  |  |
|          | 复            | <b></b>        | 《水质 氨氮的测定 纳氏试剂分光光度法》(HJ535-2009)                    |  |  |  |  |
|          | 总磷           |                | 《水质 总磷的测定 钼酸铵分光光度法》(GB/T11893-1989)                 |  |  |  |  |
|          | 有组           | 非甲<br>烷总<br>烃  | 《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱<br>法》(HJ38-2017)       |  |  |  |  |
| 大气<br>污染 | 织废气          | 低浓<br>度颗<br>粒物 | 《固定污染源废气 低浓度颗粒物的测定 重量法》(HJ836-2017)                 |  |  |  |  |
| 物        | 无组织          | 非甲<br>烷总<br>烃  | 《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱<br>法》(HJ38-2017)       |  |  |  |  |
|          | 废            | 颗粒             | 《环境空气 总悬浮颗粒物的测定 重量法》(GB/T15432-1995)及               |  |  |  |  |
|          | 气            | 物              | 其修改单(生态环境部公告 2018 年第 31 号)                          |  |  |  |  |
| 噪声       | 工业企业厂<br>界噪声 |                | 《工业企业厂界环境噪声排放标准》(GB 12348-2008)                     |  |  |  |  |

#### 2、监测仪器

表 6-2 监测使用仪器

| 序号 | 仪器名称          | 型号      | 设备编号        |
|----|---------------|---------|-------------|
| 1  | 多功能声级计        | AWA5688 | RW/INTR-075 |
| 2  | 便携式风向风速仪      | PH-1    | RW/INTR-086 |
| 3  | 电子天平          | AUW120D | RW/INTR-040 |
| 4  | 自动烟尘烟气测试<br>仪 | XA-80F  | RW/INTR-032 |
| 5  | 自动烟尘烟气测试<br>仪 | XA-80F  | RW/INTR-033 |
| 6  | 气相色谱磐诺        | A91plus | RW/INTR-046 |
| 7  | 分光光度计         | 723N    | RW/INTR-009 |
| 8  | 红外测油仪         | OIL-460 | RW/INTR-044 |
| 9  | 便携式多参数分析<br>仪 | DZB-71B | RW/INTR-051 |

| 10 | 声校准器    | AWA6021A | RW/INTR-074 |
|----|---------|----------|-------------|
| 11 | 综合大气采样器 | XA-100A  | RW/INTR-035 |
| 12 | 综合大气采样器 | XA-100A  | RW/INTR-036 |
| 13 | 综合大气采样器 | XA-100A  | RW/INTR-037 |
| 14 | 综合大气采样器 | XA-100A  | RW/INTR-038 |

#### 3、检测单位资质

本次检测样品由江苏润吴检测服务有限公司(具备江苏省质量技术监督局认定资质, CMA 证书: 191012340097) 检测, 其 CMA 证书具体如图 6-1 所示。



# 检验检测机构资质认定证书

证书编号: 191012340097

名称: 江苏润吴检测服务有限公司

地址: 江苏省苏州市相城区相城经济开发区观塘路 1 号 C411 (215000)

经审查, 你机构已具备国家有关法律、行政法规规定的基本条件和能力, 现予批准, 可以向社会出具具有证明作用的数据和结果, 特发此证。资质认定包括检验检测机构计量认证。

检验检测能力及授权签字人见证书附表。

你机构对外出具检验检测报告或证书的法律责任,由 江苏润吴检测服务有限公司承担。

许可使用标志



发证日期: 2019

有效期至: 202

发证机关:



本证书由国家认证认可监督管理委员会监制、在中华人民共和国境内有效。

#### 泰科检测 CMA 认证资质

#### 图 6-1 检测单位 CMA 认证资质

- 4、质量控制与质量保证
  - (1) 废水监测分析过程中的质量保证和质量控制

水样的采集、运输、保存、实验室分析和数据计算的全过程均按照《地表水和污水监测技术规范》(HJ/T91-2002)和《水和废水监测分析方法》(第四版)的要求进行。

具体质控结果统计详见表 6-4。

#### (2) 废气监测分析过程中的质量保证和质量控制

废气验收监测质量控制与质量保证按照《固定源废气监测技术规范》 (HJ/T397-2007)、《固定污染源监测质量保证与质量控制技术规范(试行)》 (HJ/T373-2007)和《大气污染物无组织排放监测技术导则》(HJ/T55-2000)中有关规定执行。尽量避免被测排放物中共存污染物因子对仪器分析的交叉干扰;被测排放物的浓度应在仪器测试量程的有效范围即仪器量程的30~70%之间对采样仪器的流量计定期进行校准。

具体质控结果统计详见表 6-5。

#### (3) 噪声监测分析过程中的质量保证和质量控制

为保证厂界噪声监测过程的质量,噪声监测布点、测量方法及频次按照《工业企业厂界环境噪声排放标准》(GB12348-2008)执行。监测时使用经计量部门检定、并在有效使用期内的声级计;声级计在测试前后用标准发生源(93.8dB)进行校准,测量前后仪器的灵敏度相差不大于0.5dB。声级计校准结果见表6-3。

| 项目  |            |    | 声校准器编号    | 监测前校准<br>值 dB(A) | 监测后校准<br>值 dB(A) |
|-----|------------|----|-----------|------------------|------------------|
|     | 2020 02 25 | 昼间 | RW-X04-01 | 93.8             | 93.8             |
| 厂界噪 | 2020-03-25 | 夜间 | RW-X04-01 | 93.8             | 93.8             |
| 声   | 2020 02 26 | 昼间 | RW-X04-01 | 93.8             | 93.7             |
|     | 2020-03-26 | 夜间 | RW-X04-01 | 93.8             | 93.7             |

表 6-3 声级计校准结果

|      |               |    |     |         |          | 表 6-    | 4 废水            | 质量控制          | 制结果统               | 计表             |      |             |           |          |          |
|------|---------------|----|-----|---------|----------|---------|-----------------|---------------|--------------------|----------------|------|-------------|-----------|----------|----------|
|      |               |    |     | 全程戶     | 序空白      |         | 平行村             | 羊检查           |                    |                | 收检查  | 右           | 证标准样      | 具/盾挖样    | : 且      |
| 序号   | 分析            | 样品 | 样品数 | 检查      | 合格       |         | <b>汤平行</b> 室内平  |               |                    | 样品加标           |      |             |           |          |          |
| /1 7 | 项目            | 类别 | (个) | 数       | 率%       | 检查<br>数 | 合格<br>率%        | 检查<br>数       | 合格<br>率%           | 检查率%           | 合格率% | 检测<br>值 ()  | 标准<br>值() | 回收<br>率% | 合格<br>率% |
| 1    | PH 值          |    | 8   | /       | /        | /       | 100             | /             | /                  | /              | /    | /           | /         | /        | /        |
| 2    | 化学<br>需氧<br>量 |    | 14  | 2       | 100      | 2       | 100             | 2             | 100                | /              | /    | /           | /         | /        | /        |
| 3    | 悬浮物           | 废水 | 10  | /       | /        | /       | 100             | 2             | 100                | /              | /    | /           | /         | /        | /        |
| 4    | 氨氮            |    | 16  | 2       | 100      | 2       | 100             | 2             | 100                | 12.5           | 100  | /           | /         | /        | /        |
| 5    | 总磷            |    | 16  | 2       | 100      | 2       | /               | 2             | 100                | 12.5           | 100  | /           | /         | /        | /        |
|      |               |    |     |         |          | 表 6-    | 5 废气            | 质量控制          | 制结果统               | 计表             |      |             |           |          |          |
| 户    |               | 样品 | 样品数 | 全程月     | 序空白      | 现场      |                 | 羊检查<br>  家中   | 平行                 | 加标回收检查<br>样品加标 |      | 有证标准样品/质控样品 |           |          | 品        |
| 序号   | 分析项目          | 类别 | (个) | 检查<br>数 | 合格<br>率% |         | 十17<br>合格<br>率% | 型的<br>检查<br>数 | 十<br>行<br>合格<br>率% | 检查率%           | 合格率% | 检测<br>值()   | 标准<br>值() | 回收<br>率% | 合格<br>率% |
| 1    | 非甲烷总<br>烃     | 废气 | 72  | 6       | 100      | /       | /               | 6             | 100                | /              | /    | /           | /         | /        | /        |
| 2    | 颗粒物           |    | 26  | 2       | 100      | /       | /               | /             | /                  | /              | /    | /           | /         | /        | /        |

#### 表七

#### 验收监测内容:

#### 废水

本次验收监测在废水总排口、回用水箱各布一个监测点位,具体见图 3-1, 监测项目和频次见表 7-1。

表 7-1 废水监测项目和频次

| 采样点位     | 监测项目                            | 监测频次      |
|----------|---------------------------------|-----------|
| 废水总排口★W1 | pH、SS、COD、NH <sub>3</sub> -N、TP | 监测2天,每天4次 |

#### 2、废气

本项目本次验收监测对 FQ-004810、FQ-004811 排气筒进口、出口以及厂界均按照有关要求进行了监测,具体监测布点如图 3-3、3-5 所示监测内容见表 7-2:

表 7-2 无组织废气监测因子、频次、采样一览表

| 类别        | 点位                     | 环保设施及采样点<br>位    | 监测项目      | 监测频次    |
|-----------|------------------------|------------------|-----------|---------|
| 有组织       | FQ-004810 排<br>气筒      | 布袋除尘器进口、出<br>口   | 颗粒物       | 2天,每天4次 |
| 废气        | FQ-004811 排<br>气筒      | 活性炭吸附装置进<br>口、出口 | 非甲烷总烃     | 2天,每天4次 |
| 无组织<br>废气 | 上风向 A<br>下风向 B、C、<br>D | 厂界               | 非甲烷总烃、颗粒物 | 2天,每天4次 |

#### 3、厂界噪声监测

厂界 1m 处分东、南、西、北四个方向布设监测点位,传声器位置高于墙体并指向声源处,频次为监测 2 天,昼、夜间各监测 1 次,噪声监测点位如图 3-6,监测内容见表 7-3。

表 7-3 厂界噪声监测结果

| 监测点位编号      | 监测点位   | 监测项目    | 监测频次           | 监测方法                       |  |
|-------------|--------|---------|----------------|----------------------------|--|
| ▲N1         | 东厂界外1米 |         |                |                            |  |
| ▲N2         | 南厂界外1米 | 等效 A 声级 | 连续监测2天,每天昼、夜间各 | 《工业企业厂界环<br>境噪声排放标准》       |  |
| ▲N3         | 西厂界外1米 | (Leq)   | 1次             | 境噪严採放你在》<br>(GB12348-2008) |  |
| <b>▲</b> N4 | 北厂界外1米 |         |                |                            |  |

#### 4、环境质量监测

环境影响评价报告书(表)及审批部门审批决定中未对环境敏感保护目标有要求

的要进行环境质量监测;本次验收未进行环境质量的监测。

#### 验收监测期间生产工况记录:

于 2020 年 03 月 25 日-2020 年 03 月 26 日对科德宝·宝翎无纺布(苏州)有限公司年产空气净化器用过滤器 800 万个扩产项目进行了废水、废气、厂界环境噪声方面的验收监测,验收监测期间全公司生产正常、环保设施正常运行,其中表 8-1 是验收监测期间该公司生产情况。

表 8-1 现场监测期间产品工况记录表

| -     |                       | 批复产能           | 折算满负         | 监     | 测期间产量  | (万平         | 方米)     |
|-------|-----------------------|----------------|--------------|-------|--------|-------------|---------|
| 序号    | 产品名称                  | 加夏严配<br>(万平方   | 荷日产量         | 2020年 | 03月25日 | 2020 4      | 年03月26日 |
| )1. 3 | ) HH 41/1/V           | 米/天)           | (万平方<br>米/天) | 产量    | 负荷%    | 产量          | 负荷%     |
| 1     | 印花无纺布<br>(本次验收项<br>目) | 700            | 2.5          | 2.4   | 96     | 2.5         | 100     |
| 2     | 汽车内饰材料                | 2400           | 8.57         | 8.1   | 94.52  | 8           | 93.35   |
| 3     | 气体吸附滤材                | 1200           | 4.29         | 3.8   | 88.58  | 4           | 93.24   |
| 4     | 注塑配套件                 | 60 万套/<br>年    | 0.214        | 0.18  | 84.11  | 0.2         | 93.46   |
| 5     | 汽车空调过滤<br>器           | 1750 万件<br>/年  | 6.25         | 5.5   | 88.00  | 5.8         | 92.80   |
| 6     | 袋式过滤器                 | 12.5 万组/       | 0.0446       | 0.04  | 89.69  | 0.03        | 8 85.20 |
| 7     | 工业袋式过滤<br>器           | 15 万组/<br>年    | 0.0536       | 0.05  | 93.28  | 0.05        | 93.28   |
| 8     | 工业板式/盒式<br>过滤器        | 3 万组/年         | 0.0107       | 0.01  | 93.46  | 0.01        | 93.46   |
| 9     | 家用空气净化<br>器板式过滤器      | 32 万组/<br>年    | 0.1143       | 0.098 | 85.74  | 0.010       | 9.19    |
| 10    | MC 板式过滤器              | 12 万只/<br>年    | 0.0429       | 0.035 | 81.59  | 0.04        | 93.24   |
| 11    | 印花无纺布                 | 700 万平<br>方米/年 | 2.5          | 2     | 80     | 2.1         | 84      |
|       |                       |                |              | 监测期间  | 可产量    |             |         |
| 序号    | 产品名称                  |                | 年 03 月 25 日  | 1     |        | 年 03 月 26 日 |         |
|       |                       | 产量             | 负            | 荷     | 产量     |             | 负荷      |
| 1     | 空气净化器用<br>过滤器         | 3.2            | 100          | 0%    | 3.2    |             | 100%    |

#### 验收监测结果:

#### 1、废水

本次验收监测按照《监测方案》,于 2020 年 03 月 25 日、26 日对该项目废水进行了监测,共监测 8 次(一天 4 次)。监测结果见表 8-2。

表 8-2 废水监测结果及评价表

| 监测     | 采样         | 次数           | pH 值          | 悬浮物   | 化学需 氧量 | 氨氮     | 总磷     |
|--------|------------|--------------|---------------|-------|--------|--------|--------|
| 位<br>置 | 日期         | 17/30        | 无量纲           | mg/L  | mg/L   | mg/L   | mg/L   |
|        |            | 1            | 7.46          | 46    | 234    | 14.6   | 1.26   |
|        |            | 2            | 7.53          | 49    | 263    | 13.4   | 1.26   |
|        | 2020.03.25 | 3            | 7.36          | 40    | 249    | 13.8   | 1.23   |
|        |            | 4            | 7.62          | 34    | 255    | 14.2   | 1.24   |
| 生      |            | 日均浓度/范<br>围  | 7.36~7.6<br>2 | 42.25 | 250.25 | 14     | 1.2475 |
| 活      | 执行         | <b>宁标准</b>   | 6~9           | 400   | 500    | 45     | 8      |
| 污<br>水 | 评位         | 介结果          | 达标            | 达标    | 达标     | 达标     | 达标     |
| 排      |            | 1            | 7.31          | 62    | 231    | 13.4   | 1.22   |
| 放      |            | 2            | 7.54          | 50    | 235    | 13.8   | 1.15   |
| 口      | 2020.03.26 | 3            | 7.62          | 41    | 248    | 14.4   | 1.19   |
|        |            | 4            | 7.44          | 42    | 244    | 13.1   | 1.17   |
|        |            | 日均浓度(范<br>围) | 7.31~7.6<br>2 | 48.75 | 239.5  | 13.675 | 1.1825 |
|        | 执行         | <b></b>      | 6~9           | 400   | 500    | 45     | 8      |
|        | 评位         | 介结果          | 达标            | 达标    | 达标     | 达标     | 达标     |

本次监测结果表明:厂区总排口的的 pH 值、化学需氧量、悬浮物、氨氮、总磷指标都达到苏州新区污水处理厂接管标准。

#### 2、废气

#### (1) 有组织废气

本次验收监测按照《监测方案》,于 2020 年 03 月 25 日、26 日对该项目颗粒物和非甲烷总烃废气进行监测,废气监测结果及评价结论见表 8-3。

表 8-3 项目排气筒进、出口监测结果及评价表

|    |    | 监   |            |          | 监测组             | <b>洁果</b>       | 执行标                 | 示准                 |          |
|----|----|-----|------------|----------|-----------------|-----------------|---------------------|--------------------|----------|
| 监测 | 点位 | 测项目 | 监测日期       | 监测<br>频次 | 排放浓度<br>(mg/m³) | 监测速<br>率 (kg/h) | 排放浓<br>度<br>(mg/m³) | 监测速<br>率<br>(kg/h) | 判定<br>结果 |
| FQ | G1 | 颗   | 2020.03.25 | 1        | 6.1             | 0.00493         | 120                 | 3.5                | 达标       |

|            |            |        | 1               | 1  | r       | ı         |                      | 1      | _  |
|------------|------------|--------|-----------------|----|---------|-----------|----------------------|--------|----|
| -00<br>48  | 进 1        | 粒<br>物 | 2020.03.26      | 1  | 6.2     | 0.00527   |                      |        | 达标 |
| 10         | G1         | 颗      | 2020.03.25      | 1  | 5.8     | 0.00464   |                      |        | 达标 |
|            | 进 2        | 粒<br>物 | 2020.03.26      | 1  | 6.0     | 0.00505   | 120                  | 3.5    | 达标 |
|            |            |        |                 | 1  | 1.4     | 0.00182   |                      |        | 达标 |
|            |            |        |                 | 2  | 1.5     | 0.00195   |                      |        | 达标 |
|            |            |        | 2020.03.25      | 3  | 1.4     | 0.00177   | 120                  | 3.5    | 达标 |
|            |            | 田芸     |                 | 4  | 1.4     | 0.00185   |                      |        | 达标 |
|            | 出          | 颗粒     |                 | 均值 | 1.425   | 0.00185   |                      |        | 达标 |
|            | П          | 物物     |                 | 1  | 1.4     | 0.00173   |                      |        | 达标 |
|            |            | 190    |                 | 2  | 1.3     | 0.00157   |                      |        | 达标 |
|            |            |        | 2020.03.26      | 3  | 1.5     | 0.00190   | 120                  | 3.5    | 达标 |
|            |            |        |                 | 4  | 1.4     | 0.00173   |                      |        | 达标 |
|            |            |        |                 | 均值 | 1.4     | 0.00173   |                      |        | 达标 |
|            |            | 监      |                 |    | 监测组     | <b>结果</b> | 执行标准                 |        |    |
| <b>些</b> 派 | 点位         | 测      | 监测日期            | 监测 | 排放浓度    | 监测速       | 排放浓                  | 监测速    | 判定 |
| 1111.175   | 1 //// 177 | 项      | III. (V.) [179] | 频次 | (mg/m³) | 率 (kg/h)  | 度                    | 率      | 结果 |
|            | ı          | 目      |                 |    | _       |           | (mg/m <sup>3</sup> ) | (kg/h) |    |
|            |            |        | 2020.03.25      | 1  | 1.18    | 0.00158   |                      |        | 达标 |
|            |            | 非      |                 | 2  | 1.22    | 0.00164   | 70                   | 3.0    | 达标 |
|            |            | 甲甲     |                 | 3  | 1.50    | 0.002     | 70                   |        | 达标 |
|            | 进          | ·<br>烷 |                 | 均值 | 1.3     | 0.00174   |                      |        | 达标 |
|            |            | 总      |                 | 1  | 1.20    | 0.0015    |                      |        | 达标 |
|            |            | 烃      | 2020.03.26      | 2  | 1.17    | 0.00151   | 70                   | 3.0    | 达标 |
| FQ         |            | /      | 2020.03.20      | 3  | 1.17    | 0.0015    | 70                   | 3.0    | 达标 |
| -00        |            |        |                 | 均值 | 0.18    | 0.0015    |                      |        | 达标 |
| 48         |            |        |                 | 1  | 0.89    | 0.00105   |                      |        | 达标 |
| 11         |            | 非      | 2020.03.25      | 2  | 1.01    | 0.00115   | 70                   | 3.0    | 达标 |
|            |            | 甲甲     | 2020.03.23      | 3  | 0.98    | 0.00113   | 70                   | 3.0    | 达标 |
|            | 出          | 烷      |                 | 均值 | 0.96    | 0.00111   |                      |        | 达标 |
|            | П          | 总      |                 | 1  | 0.86    | 0.00103   |                      |        | 达标 |
|            |            | 烃      | 2020.03.26      | 2  | 0.95    | 0.00106   | 70                   | 3.0    | 达标 |
|            |            | /14    | 2020.03.20      | 3  | 0.94    | 0.00101   | 70                   | 3.0    | 达标 |
| l          |            |        |                 | 均值 | 0.9167  | 0.00103   |                      |        | 达标 |

#### 注: 非甲烷总烃有组织检测频次中1、2、3均为小时均值。

本次监测结果表明:各排气筒中废气经相应的废气处理装置处理以后,各污染因子的排放速率和排放浓度均能达到相应的排放标准。

#### (2) 无组织废气

2020年03月25日、26日对公司厂界无组织废气—非甲烷总烃、颗粒物进行了采样监测,监测频次按照《监测方案》执行,监测结果与评价见8-4。

表 8-4 废气无组织排放监测结果及评价表(单位: mg/m³)

| 监测 | 监测 | 监测 |   | 采样频次 |   | 最大值        | 执行标          | 评价 |
|----|----|----|---|------|---|------------|--------------|----|
| 点位 | 项目 | 日期 | 1 | 2    | 3 | $(mg/m^3)$ | 准<br>(mg/m³) | 结果 |

| 厂界上风向 Q1    | JL 177    |       | 0          | .52 | 0.7      | 1  | 0.77       |       |            |       |
|-------------|-----------|-------|------------|-----|----------|----|------------|-------|------------|-------|
| 厂界下风向 Q2    | 非甲        |       | 0          | .69 | 0.7      | 6  | 0.78       | 0.05  | 2.2        | 77.1- |
| 厂界下风向 Q3    | 烷总<br>烃   |       | 0          | .70 | 0.8      | 1  | 0.85       | 0.85  | 3.2        | 达标    |
| 厂界下风向 Q4    | 江         | 2019. | 0          | .68 | 0.8      | 2  | 0.78       |       |            |       |
| 厂界上风向 Q1    |           | 5.20  | 0.         | 124 | 0.16     | i1 | 0.217      |       |            |       |
| 厂界下风向 Q2    | 颗粒        |       | 0.         | 230 | 0.17     | 8  | 0.253      | 0.207 | 1.0        | 24-45 |
| 厂界下风向 Q3    | 物         |       | 0.         | 159 | 0.26     | 8  | 0.307      | 0.307 | 1.0        | 达标    |
| 厂界下风向 Q4    |           |       | 0.         | 142 | 0.21     | 4  | 0.235      | ]     |            |       |
| 厂界上风向 Q1    | -11- III  |       | 0          | .50 | 0.6      | 5  | 0.69       |       |            |       |
| 厂界下风向 Q2    | 非甲<br>烷总  |       | 0          | .56 | 0.99     | 9  | 0.76       | 0.99  | 3.2        | 达标    |
| 厂界下风向 Q3    |           |       | 0          | .65 | 0.69     | 9  | 0.75       | 0.99  | 3.2        | 心你    |
| 厂界下风向 Q4    | 圧         | 2019. | 0          | .63 | 0.69     | 9  | 0.84       | ]     |            |       |
| 厂界上风向 Q1    |           | 5.21  | 0.         | 106 | 0.21     | 4  | 0.144      |       |            |       |
| 厂界下风向 Q2    | 颗粒        |       | 0.         | 141 | 0.24     | .9 | 0.234      | 0.285 | 1.0        | 达标    |
| 厂界下风向 Q3    | 物         |       | 0.141      |     | 0.285    |    | 0.180      | 0.283 | 1.0        | 心你    |
| 厂界下风向 Q4    |           |       | 0.3        | 229 | 0.23     | 2  | 0.252      |       |            |       |
|             | 日期        |       |            |     | 03.25    |    |            |       | 2020.03.26 |       |
|             | 时段        | 一时長   | 殳          | 二月  | 付段       | Ξ  | 三时段        | 一时段   | 二时段        | 三时段   |
|             | 天气        | 晴     |            | 睛   | 青        |    | 晴          | 阴     | 阴          | 阴     |
|             | 大气        |       |            |     |          |    |            |       |            |       |
|             | 压         | 101.8 | 3          | 10  | 1.6      |    | 101.2      | 101.9 | 101.5      | 101.0 |
|             | kPa       | -44   |            |     | <u> </u> |    |            | II    | !! ₩       |       |
| <b>与各分类</b> | 风向        | 东南风   | <b>〈</b> ( | 东国  | <b> </b> | 7  | <b>下南风</b> | 北风    | 北风         | 北风    |
| 气象参数        | 平均        | 2.7   |            | 2   | _        |    | 2.1        | 2.0   | 2.6        | 2.5   |
|             | 风速        | 2.7   |            | 2.  | .5       |    | 2.1        | 2.8   | 2.6        | 2.5   |
|             | m/s<br>相对 |       |            |     |          |    |            |       |            |       |
|             | 湿         | 54    |            | 5   | 1        |    | 46         | 58    | 55         | 51    |
| -           | 度%        | 34    |            | 3   | 1        |    | 70         | 50    | 33         | J1    |
|             | 气         |       |            |     |          |    |            |       |            |       |
|             | 温℃        | 18.6  |            | 20  |          |    | 22.5       | 17.4  | 19.2       | 20.8  |

由上表可见,非甲烷总烃的无组织排放满足相应的排放标准。

#### 3、厂界噪声

噪声监测结果及评价结论见表 8-5。

表 8-5 厂界噪声监测结果

| 点位/监测      | 时间      | N1<br>dB(A) | N2<br>dB(A) | N3<br>dB(A) | N4<br>dB(A) |
|------------|---------|-------------|-------------|-------------|-------------|
|            | 昼间      | 53.6        | 56.1        | 56.5        | 53.7        |
|            | 标准      | 60          | 60          | 70          | 60          |
| 2020 02 25 | 达标情况    | 达标          | 达标          | 达标          | 达标          |
| 2020.03.25 | 夜间      | 41.5        | 46.0        | 48.2        | 42.2        |
|            | 标准      | 50          | 50          | 55          | 50          |
|            | 达标情况 达标 |             | 达标          | 达标          | 达标          |

|            | 昼间   | 53.3                                                                               | 55.1      | 57.5   | 56.1 |  |  |  |
|------------|------|------------------------------------------------------------------------------------|-----------|--------|------|--|--|--|
|            | 标准   | 60                                                                                 | 60        | 70     | 60   |  |  |  |
| 2020.03.26 | 达标情况 | 达标                                                                                 | 达标        | 达标     | 达标   |  |  |  |
| 2020.03.20 | 夜间   | 47.6                                                                               | 43.4      | 47.2   | 45.9 |  |  |  |
|            | 标准   | 50                                                                                 | 50        | 55     | 50   |  |  |  |
|            | 达标情况 | 达标                                                                                 | 达标        | 达标     | 达标   |  |  |  |
| 气象参        | 数    |                                                                                    | 26 日, 昼间: | 2.0m/s |      |  |  |  |
| 监测工        | 况    | 验收监测期间,企业正常生产;2020年03月25日平均生产工况达到100%,2020年03月26日平均生产工况达到100%以上,验收监测负荷均达到75%以上的要求。 |           |        |      |  |  |  |

监测结果表明:四周厂界昼、夜噪声均达到《工业企业厂界环境噪声排放标准》(GB12348-2008)2 类、4 类区标准。

#### 4、污染物排放总量核算

本项目污染物排放总量计算情况分别见表 8-6、8-7。

表 8-6 本项目废水污染物总量控制指标

| 废水污染<br>物名称          | 环评年<br>工作时<br>间(天)            | 实际年<br>运行时<br>间(天) | 废水量     | COD     | SS     | 氨氮       | 总磷      |  |  |
|----------------------|-------------------------------|--------------------|---------|---------|--------|----------|---------|--|--|
| 监测期间实<br>测浓度<br>mg/L | /                             | /                  | 38000   | 244.875 | 45.5   | 13.8375  | 1.215   |  |  |
| 实际生活废<br>水 t/a       | 250                           | 250                | /       | 9.30525 | 1.729  | 0.525825 | 0.04617 |  |  |
| 环评批准总<br>量 t/a       | /                             | /                  | 26001.6 | 12.7688 | 6.3158 | 0.6412   | 0.12384 |  |  |
| 执行情况                 | /                             | /                  | 达标      | 达标      | 达标     | 达标       | 达标      |  |  |
| 备注                   | 2、企业污水量为 15<br>吨,与环<br>放量为 38 |                    |         |         |        |          |         |  |  |

|           | 表 8-7 废气排放总量核算表 |                      |           |                         |                |                    |  |  |  |
|-----------|-----------------|----------------------|-----------|-------------------------|----------------|--------------------|--|--|--|
| 指标        | 平均速率<br>kg/h    | 运行时间<br>h/a          | 运行负<br>荷% | 环评允许<br>排放量 t/a         | 实际排放<br>总量 t/a | 是否满足<br>总量控制<br>指标 |  |  |  |
| 非甲烷<br>总烃 | 0.00107         | 6000                 | 100       | 0.008                   | 0.00642        | 满足                 |  |  |  |
| 颗粒物       | 0.00179         | 6000                 | 100       | 0.36                    | 0.01074        | 满足                 |  |  |  |
| 执行情<br>况  |                 | 实际排放总量未超过环评批准总量,符合要求 |           |                         |                |                    |  |  |  |
| 备注        | 废气总量            | 量计算公式:               | 平均速率×年起   | 运行时间×10 <sup>-3</sup> - | :监测期间平均        | 匀工况;               |  |  |  |

#### 5、环保设施去除效率监测结果

表 8-8 废气治理设施去除效率统计表

| 污染物 来源 | 治理设施 | 监测时<br>间       | 监测指<br>标 | 进口排<br>放速率<br>kg/h | 出口排<br>放速率<br>kg/h | 去除效<br>率 (%) | 设计效率(%) |
|--------|------|----------------|----------|--------------------|--------------------|--------------|---------|
| 活性炭    | 布袋除  | 2020.03.<br>25 | 颗粒物      | 0.004785           | 0.00185            | 61.34        | 95      |
| 灌装     | 尘    | 2020.03.<br>26 | 秋水红初     | 0.00516            | 0.00173            | 66.47        | 95      |
| 点胶、测   | 活性炭  | 2020.03.<br>25 | 非甲烷      | 0.00174            | 0.00111            | 36.21        | 90      |
| 试      | 吸附   | 2020.03.<br>26 | 总烃       | 0.0015             | 0.00103            | 31.33        | 90      |

根据监测结果,项目废气处理装置对废气中各污染物均有一定的处理效果, 且污染物达标排放,因此项目对环境影响较小;建设单位应继续加强处理设施的 维护和管理。

#### 表九

#### 验收监测结论:

#### 1、工程基本情况和环保执行情况

科德宝·宝翎无纺布(苏州)有限公司年产空气净化器用过滤器 800 万个扩产项目建设地点位于苏州高新区滨河路 1588 号,实际总投资为 1600 万元,环保投资为 50 万元,占总投资金额的 3.1%;该项目环境影响报告表以及环评批复等材料齐全,废气、废水、固废和噪声所配套的环保设施、措施均已基本按照环境影响报告表及环评批复的要求落实到位。

#### 2、环境保护设施调试效果

2020年03月25日-26日,受科德宝·宝翎无纺布(苏州)有限公司委托,江苏润吴检测服务有限公司组织专业技术人员对"科德宝·宝翎无纺布(苏州)有限公司年产空气净化器用过滤器800万个扩产项目"进行了验收监测。验收监测两天的生产负荷均大于75%,满足竣工验收监测对工况条件的要求。

#### (1) 废水

本项目废水为生活污水;验收监测期间,总排口废水中 pH 范围、SS、COD、NH<sub>3</sub>-N、TP 排放浓度日均值均符合苏州新区污水处理厂的接管要求。

#### (2) 废气

验收监测期间,本项目活性炭灌装废气经集气罩收集后,经布袋除尘器处理, 尾气通过1根15米的FQ-004810排气筒排放,未能收集到的部分车间内无组织排放。 点胶废气经收集后,经活性炭吸附处理,尾气通过1根15米高的FQ-004811排气筒 排气排放。

验收监测期间,非甲烷总烃的排放浓度和速率均能满足《大气污染物综合排放标准》(GB16297-1996)及苏高新管〔2018〕74号要求;颗粒物排放浓度及速率均可满足《大气污染物综合排放标准》(GB16297-1996)表2二级标准要求。

本项目以生产车间为界 50m 卫生防护距离内无环境保护敏感点,符合要求。项目建设后全厂卫生防护距离不变,全厂卫生防护距离包络线范围内无环境敏感目标。

#### (3) 厂界噪声监测结果

验收监测期间,本项目东侧、南侧、北侧厂界昼、夜所测点位厂界环境噪声均符合《工业企业厂界环境噪声排放标准》(GB12348-2008)的2类标准,西侧厂界

昼、夜环境噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)4 类标准。

#### (4) 固体废物

本项目一般工业固废收集后外卖、危险废物收集后委托资质单位处置、生活垃圾由出租方统一收集委外处置,最终零排放。

#### (5) 总量控制指标

本项目废水中废水量、COD、SS、氨氮、总磷排放量符合环评中全厂总排放量控制指标;有组织废气非甲烷总烃、颗粒物的排放量符合环评中总量控制指标。

2、存在问题

无

#### 3、建议

- (1)加强公司员工的环保意识,加强废气处理设施的日常运行及维护管理,建立健全各项环保设施的运行和维护台帐。
- (2)建议该公司加强环保从业人员的培训,做到持证上岗,进一步完善健全环境管理规章制度,在保证污染物稳定达标排放的基础上,进一步加强对生产全过程的环保管理及监督,减少"跑、冒、滴、漏",最大减轻项目对环境带来的影响;
  - (3) 企业应及时开展自测工作,确保稳定达标排放。
- (4) 当项目生产工艺、生产产品及产量有变化时,请及时按建设项目环保管理的有关要求报告相关环境行政主管部门。

#### 附图

附图一 项目地理位置图

附图二 项目周边 300 米状况图

附图三 项目生产车间平面布置图

#### 附件

附件1 原环评批文

附件2 营业执照、法人身份证

附件3 房产证

附件4 土地证

附件 5 污水接管协议

附件 6 生活垃圾处理协议

附件7 危废处置协议

附件8 监测期间工况证明

附件9 监测报告

附件 10 建设项目工程竣工环境保护"三同时"验收登记表

#### 表十 建设项目环境保护"三同时"竣工验收登记表

#### 建设项目工程竣工环境保护"三同时"验收登记表

填表单位(盖章):

填表人(签字):

项目经办人(签字):

|    |              |            | •            |                                         |                       | 一人人人人          |                   |            |         |              |                        | 巫 1 / •         |                  |                       |               |
|----|--------------|------------|--------------|-----------------------------------------|-----------------------|----------------|-------------------|------------|---------|--------------|------------------------|-----------------|------------------|-----------------------|---------------|
|    | 项目名          |            | 科德宝•宝        |                                         | 5州) 有限公<br>300 万个扩产   | 司年产空气净<br>项目   | 化器用               | 项目代码       |         |              | /                      | 建设均             | 也点               | 苏州高新区沿                | 宾河路 1588 号    |
|    | 行业类别(<br>理名录 |            |              | 47 💈                                    | 塑料制品制造                | 1              |                   | 建设性质       |         | □新建√改扩建□技术改造 |                        | 建 □技术改造         |                  |                       |               |
|    | 设计生产         | 能力         |              | 空气净化器                                   | 用过滤器 800              | )万个/年          |                   | 实际生产能力     |         | 空气净          | 化器用过滤器 800 7<br>个/年    | 环               | 评单位              | 江苏环境嘉惠环境科学研<br>究有限公司  |               |
|    | 环评文件审        | 批机关        |              | 苏州                                      | 高新区环保局                | ∃              |                   | 审批文号       |         | 苏新           | <b>所</b> 环项[2018]255 号 | 环评              | 文件类型             | 扌                     | 设告表           |
| 建设 | 开工日          | 期          |              | 20                                      | 18年12月                |                |                   | 竣工日期       |         |              | 2020年3月                | 排污许可            | J证审领时间           |                       | /             |
| 项目 | 环保设施设        | 计单位        |              |                                         | /                     |                |                   | 环保设施施工单    | 位.      |              | /                      |                 | 污许可证编号           |                       | /             |
|    | 验收单          |            |              | 江苏国升明                                   | 华生态技术有                | 有限公司           |                   | 环保设施监测单    |         | 江苏润          | 吴检测服务有限公司              | 验收出             | 5测时工况            |                       | 00%           |
|    | 投资总概算        |            |              | . , , , , , , , , , , , , , , , , , , , | 1600                  | *******        |                   | 环保投资总概算()  |         | 77.114       | 50                     |                 | 比例(%)            |                       | 3.1%          |
|    | 实际总统         |            |              |                                         | 1600                  |                |                   | 实际环保投资(万   |         |              | 50                     |                 | 比例(%)            |                       | 3.1%          |
|    | 废水治理 (       | (万元)       | 0            | 气治理(万<br>元)                             | 40 噪                  | 声治理(万<br>元)    | 2                 | 固体废物治理(万   | 元)      |              | 5                      | 绿化及生            | E态(万元)           |                       | (万元) 3        |
|    | 新增废水处<br>能力  |            | <b>-</b>     |                                         | /                     |                |                   | 新增废气处理设施   | 能力      | Þ            | 风量为 3000m³/h           | 年平              | 均工作时             | (                     | 5000h         |
|    | 运营单位         |            | 科德宝•宝        | 翎无纺布(克<br>公司                            | 5州)有限                 | 运营单位社会         | 统一信用              | 月代码(或组织机构( | 代码)     | 913          | 205056082357995        | 验               | 收时间              | 2                     | 020.5         |
|    | 污染物          | 物          | 原有排放<br>量(1) | 本期工程<br>实际排放<br>浓度(2)                   | 本期工程<br>允许排放<br>浓度(3) | 本期工程<br>产生量(4) | 本期工<br>自身削<br>量(5 | 减 际排放量     | 本期二 定排方 |              | 本期工程"以新<br>带老"削减量(8)   | 全厂实际排<br>放总量(9) | 全厂核定排<br>放总量(10) | 区域平衡<br>替代削减<br>量(11) | 排放增减量<br>(12) |
| 污染 | 废水           | (          | 2.20016      | /                                       | /                     | 4000           |                   | /          | 40      | 000          | /                      | /               | 26001.6          | /                     | +4000         |
| 物排 | 化学需          |            | 10.7688      | 244.875                                 | 500                   | 2              | /                 | /          | 2       | 2            | /                      | /               | 12.7688          | /                     | +2            |
| 放达 | 氨氮           |            | 0.4612       | 13.8375                                 | 45                    | 0.6412         | /                 | /          | 0.6     | 412          | /                      | /               | 0.6412           | /                     | +0.6412       |
| 标与 | 石油           |            | 0.0197       | /                                       | /                     | /              | /                 | /          | ,       | /            | /                      | /               | 0.0197           | /                     | /             |
| 总量 | 废气           | ĺ          | /            | /                                       | /                     | /              | /                 | /          | ,       | /            | /                      | /               | /                | /                     | /             |
| 控制 | 二氧化          | <b>公</b> 硫 | 1.77908      | /                                       | 50                    | /              | /                 | /          | ,       | /            | /                      | /               | 1.77908          | /                     | /             |
| (工 | 烟尘           |            | 1.6864       | 1.41                                    | 20                    | 0.0298         | 0.019             | 9 0.01074  | 0.      | 36           | /                      | /               | 0.61             | /                     | +0.36         |
| 业建 | 工业粉          | )尘         | /            | /                                       | /                     | /              | /                 | /          | ,       | /            | /                      | /               | /                | /                     | /             |
| 设项 | 氮氧化          | 公物         | 16.7678      | /                                       | 50                    | /              | /                 | /          | ,       | /            | /                      | /               | 16.7678          | /                     | /             |
| 目详 | 工业固体         |            | /            | /                                       | /                     | /              | /                 | /          | ,       | /            | /                      | /               | /                | /                     | /             |
| 填) | 与项目有         | SS         | 4.7158       | 45.5                                    | 400                   | 1.6            | /                 | /          | 1.      | .6           | /                      | /               | 6.3158           | /                     | +1.6          |
|    | 关的其他         | 总磷         | 0.09184      | 1.215                                   | 8                     | 0.032          | /                 | /          | 0.0     | )32          | /                      | /               | 0.12384          | /                     | +0.032        |
|    | 特征污染<br>物    | VOCs       | 2.04525      | 0.94                                    | 70                    | 0.00972        | 0.003             | 0.00642    | 0.0     | 008          | /                      | /               | 2.05325          | /                     | +0.008        |

注:1、排放增减量:(+)表示增加,(-)表示减少。2、(12)=(6)-(8)-(11),(9)=(4)-(5)-(8)-(11)+(1)。3、计量单位:废水排放量——万吨/年;废气排放量——万标立方米 /年;工业固体废物排放量——万吨/年;水污染物排放浓度——毫克/升





# 检测报告

# Test Report

报告编号: RW200401015

正本

项目名称

科德宝·宝翎无纺布(苏州)有限公司年产空气净化器 用过滤器 800 万个扩产项目

检测类别

委托检测

委托单位

科德宝•宝翎无纺布(苏州)有限公司

委托单位地址

苏州高新区滨河路 1588 号

报告日期

2020年05月09日

江苏润吴检测服务有限公司

Jiangsu Runwu Testing Service Co., Ltd.

地址: 苏州市相城经济开发区观塘路 1号西交大科技园 C411

邮编: 215000

电话: 0512-65653354

邮箱: gsmhjc@dingtalk.com

#### 声明

本检测报告涂改、增删无效

之《本检测报告仅对当次检测有效。送检样品仅对来样负责,不对样 品来源负责。无法复现的样品,不受理申诉。

三、未经本公司同意,不得以任何方式部分复制本检测报告。经同意复制的复制件,应由本公司加盖公章确认。

四、用户对本检测报告若有异议,,可在收到本报告后 15 国内,向本公司书面提出,逾期概不受理。

五、本检测报告及检测机构名称不得用于广告宣传。

六、我公司对本报告的检测数据保守秘密。

七、用户需要对报告作更改或增补时,本报告原件需收回,用户不能 归还原件的,本公司会在公开渠道进行作废申明。

地址: 苏州市相城经济开发区观塘路 1 号西交大科技园 C411

电话: 0512-65653354

邮编:/215000

邮箱: gsmhjć@dingtalk.com

# 检测报告

|             | 7 .00 7 0 0 0 0                          | 2 2 2          |                                               |
|-------------|------------------------------------------|----------------|-----------------------------------------------|
| 委托单位        | 名称: 科德宝·宝翎无纺布(苏                          | 州)有限公司         |                                               |
| 信息          | 地址: 苏州高新区滨河路 1588                        | glement.       | i Kami                                        |
| 样品类别        | 废水、有组织废气、无组织废气                           | 1、噪声           |                                               |
| 采样日期        | 2020年03月25日-2020年03月26日                  | 检测周期           | 2020年03月25日-2020年03月27日                       |
| 采样人员        | 仇晓夏、马伟丰                                  |                |                                               |
| 检测目的        | 4 3 3 3                                  | and the second | 对其年产空气净化器用过滤器 800 万个组织废气、噪声进行检测               |
| 检测内容        | 有组织废气<br>无组织                             | 非甲烷总烃          | 5、氨氮、总磷、石油类。<br>、低浓度颗粒物*。<br>总烃、颗粒物。<br>一界噪声。 |
| 检测方法        |                                          | 详见第9页          | <b>万</b> 。                                    |
|             | L. L | 4.77           |                                               |
| 检测结果        |                                          | 捡测结果见第 2       | 2~8 页。                                        |
|             |                                          |                |                                               |
| 编制: 基       | 2 Th.                                    | ( Age          | W. Carlotte and the second                    |
| 审核: 签发:     |                                          | 检测报告专签发日期      | 用章<br>第25 月~1 日                               |
| The Profite | Continue of the second                   | Marie .        |                                               |

# 废水检测结果

| 単位 第次    |
|----------|
| 52 无量纲   |
| mg/L     |
| 4 / mg/L |
| 2 mg/L   |
| mg/L     |
| 99 mg/L  |
| 14 无量纲   |
| 4 mg/L   |
| 2// mg/L |
| .l. mg/L |
| 7 mg/L   |
| mg/L     |
|          |
|          |
|          |

| IA NEL L. d. ed. |                |                      |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|----------------|----------------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 检测点名称。           | and the second | 15#排气筒               | 进口                    | 排气筒高度(m)              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 烟道截面积<br>(m)     | 0.3            | 净化                   | 2设备 活性炭吸附             | 才 运行负荷 <b>(</b>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 采样日期: 20         | 20.03.25       | de la                |                       |                       | ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 检测项目             | 检测频            | 次                    | 第一次                   | 第二次                   | 第三次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | 第 排放浓度         | $(mg/m^3)$           | 1.16                  | 1.26                  | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 个排放速率          | (kg/h)               | 1.49×10 <sup>-3</sup> | 1.67×10 <sup>-3</sup> | 1.58×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | 第二排放浓度         | $(mg/m^3)$           | 1.22                  | 1.18                  | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 北田岭台区            |                | (kg/h)               | 1.65×10 <sup>-3</sup> | 1.59×10 <sup>-3</sup> | 1.70×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 非甲烷总烃            | 第一排放浓度         | $(mg/m^3)$           | 1/1/17                | 1.22                  | 2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 个 排放速率         | (kg/h)               | 1.61×10 <sup>-3</sup> | 1.67×10 <sup>-3</sup> | 2.71×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | 均排放浓度          | $(mg/m^3)$           | 1.18                  | 1.22                  | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 植排放速率          | (kg/h)               | 1.58×10 <sup>-3</sup> | 1.64×10 <sup>-3</sup> | 2.00×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 采样日期: 20         | 20.03.26       |                      | A.                    |                       | The same of the sa |
| 检测项目             | 检测频            | 次                    | 第一次                   | 第二次                   | 第三次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.<br>1/2.      | 第一排放浓度         | (mg/m <sup>3</sup> ) | 110                   | 1.23                  | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 排放速率           | (kg/h)               | 135×10 <sup>-3</sup>  | 1.62×10 <sup>-3</sup> | 1:59×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | 第 排放浓度         | $(mg/m^3)$           | 1.23                  | 1.07                  | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 北田岭台区            | 个 排放速率         | (kg/h)               | 1.57×10 <sup>-3</sup> | 1.39×10 <sup>-3</sup> | 1.48×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 非甲烷总烃            | 第 排放浓度         | (mg/m <sup>3</sup> ) | 1.27                  | 1.20                  | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 个 排放速率         | (kg/h)               | 1.59×10 <sup>-3</sup> | 1.53×10 <sup>-3</sup> | 1.44×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · .              | 排放浓度           | (mg/m <sup>3</sup> ) | 1.20                  | 1.17                  | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 值排放速率          | (kg/h)               | 1.50×10 <sup>-3</sup> | 1.51×10 <sup>-3</sup> | 1.50×10-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - A注             | aut            | 16 m                 |                       |                       | Komi <sup>n</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                |                      | % 3v                  | V <sub>0</sub> To     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                          | 1          | No.  | 有组         | 织废气检测                                    | 划结果                     |                       |
|------------------------------------------|------------|------|------------|------------------------------------------|-------------------------|-----------------------|
| 检测点名称。                                   |            | Sec. | 15#排气筒     | 出口                                       | 排气筒高度(m)                | 15                    |
| 烟道截面积<br>(m)///                          |            | 0.35 | 净化         | · 设备   活性炭吸附                             | <b>士</b> 运行负荷           |                       |
| 采样日期: 20                                 | 20.03.25   |      | ele. Sal.  | N. Same                                  |                         | Vernedo<br>V          |
| 检测项目                                     |            | 检测频  | 吹          | 第一次                                      | 第二次                     | 第三次                   |
|                                          | 第一排        | 放浓度  | $(mg/m^3)$ | 0.86                                     | 1.04                    | 0.99                  |
|                                          | 个 排        | 放速率  | (kg/h)     | 1.02×10 <sup>-3</sup>                    | 1.20×10 <sup>-3</sup>   | 1.14×10 <sup>-3</sup> |
|                                          | 第二排        | 放浓度  | $(mg/m^3)$ | 0.88                                     | 0.98                    | ./.0.97               |
|                                          | - 7 排      | 放速率  | (kg/h)     | 9.88×10-4                                | 1.16×10 <sup>-3</sup>   | 1.17×10 <sup>-3</sup> |
| 非甲烷总烃                                    | 1 — 'I     | 放浓度  | (mg/m³)    | 0,94                                     | 1.00                    | 0.98                  |
|                                          | 个 排        | 放速率  | (kg/h)     | 1.14                                     | 1.09×10 <sup>-3</sup> / | 1.09×10 <sup>-3</sup> |
|                                          | 均排         | 放浓度  | $(mg/m^3)$ | 0.89                                     | 1.01                    | 0.98                  |
|                                          | 值排         | 放速率  | (kg/h)     | 1.05×10 <sup>-3</sup>                    | 1.15×10 <sup>-3</sup>   | 1.13×10 <sup>-3</sup> |
| 采样日期: 20                                 | 20.03.26   |      |            | 2                                        |                         | 2,                    |
| 检测项目                                     |            | 检测频  | 欠          | 第一次                                      | 第二次                     | 第三次                   |
| 10.7                                     | 第一排        | 放浓度  | (mg/m³)    | 0.79                                     | 0.98                    | 0.94                  |
|                                          | <b>本</b> 排 | 放速率  | (kg/h)     | 9.15×10 <sup>-4</sup>                    | 1.08×10 <sup>-3</sup>   | 1:05×10 <sup>-3</sup> |
|                                          |            | 放浓度  | 11         | 0.84                                     | 0.92                    | 0.95                  |
| 非甲烷总烃                                    | 一   排      | 放速率  | (kg/h)     | 1.05×10 <sup>-3</sup>                    | 1.08×10 <sup>-3</sup>   | 9.73×10 <sup>-4</sup> |
| 非中灰总定                                    | 第排三        | 放浓度  | (mg/m³)    | 0.94                                     | 0.95                    | 0.92                  |
|                                          |            | 放速率  | (kg/h)     | 1.13×10 <sup>-3</sup>                    | 1.03×10 <sup>-3</sup>   | 1.00×10 <sup>-3</sup> |
| N.                                       | 均排         | 放浓度  | (mg/m³)    | 0.86                                     | 0.95                    | 0.94                  |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 值,排        | 放速率  | (kg/h)     | 1:03×10 <sup>-3</sup>                    | 1.06×10 <sup>-3</sup>   | 1.01×10 <sup>-3</sup> |
| - ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (  | ante       |      | in for     |                                          |                         | Maria I               |
| A, A |            |      |            | N. N |                         |                       |

|                                            | A second second |                                           |                       |  |  |  |  |
|--------------------------------------------|-----------------|-------------------------------------------|-----------------------|--|--|--|--|
| 检测点名称                                      | 14#排气作          | 奇进口1                                      | 排气筒高度(m)              |  |  |  |  |
| 烟道截面积<br>(m²)                              | 1.00            | 化设备                                       | 运行负荷 / /              |  |  |  |  |
| 采样日期: 2020.                                | 03.25           |                                           |                       |  |  |  |  |
| 检测项目                                       | 检测频次            |                                           | 第一次                   |  |  |  |  |
| 低浓度颗粒物*                                    | 排放浓度(mg/m³)     |                                           | 6.1                   |  |  |  |  |
| TRAPINI X MANAY TO                         | 排放速率(kg/h)      | 3,                                        | 4.93×10 <sup>-3</sup> |  |  |  |  |
| 采样日期: 2020.                                | 03(26           | de 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |                       |  |  |  |  |
| 检测项目                                       | 检测频次            |                                           | 第一次                   |  |  |  |  |
| 低浓度颗粒物*。                                   | 排放浓度(mg/m³)     |                                           |                       |  |  |  |  |
| IKNYPA, ZARATE 127                         | 排放速率(kg/h)      |                                           | 5.27×10 <sup>3</sup>  |  |  |  |  |
| 文.注                                        |                 | Name of the second                        | N. W.                 |  |  |  |  |
| 备注<br>———————————————————————————————————— |                 | /                                         |                       |  |  |  |  |

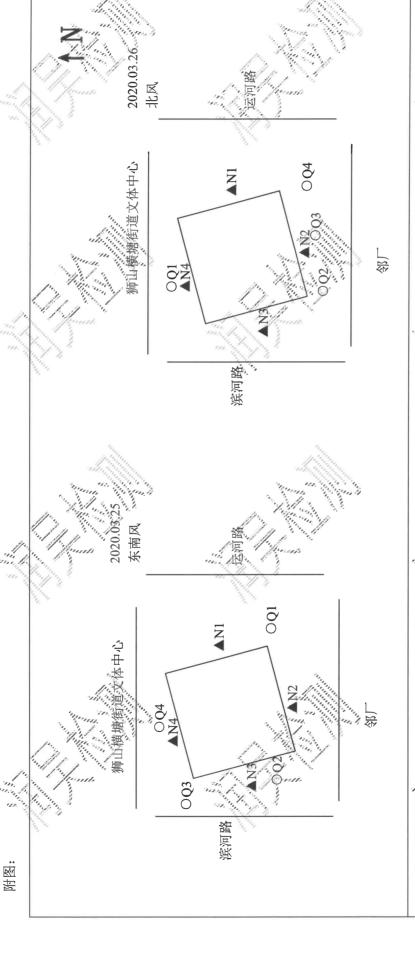
| 检测点名称                | 14#排      | 气筒进口:            | 2                     | 排气筒高度(m)              | The grant of the said |  |  |
|----------------------|-----------|------------------|-----------------------|-----------------------|-----------------------|--|--|
| 烟道截面积 0.031 净似       |           |                  |                       | 运行负荷                  |                       |  |  |
| 采样日期: 2020.03.25     |           |                  | Trans                 |                       | James                 |  |  |
| 检测项目                 | 检测频次      |                  |                       | 第一次                   | ·//                   |  |  |
| 低浓度颗粒物*              | 排放浓度(mg/m | l <sup>3</sup> ) | 5.8                   |                       |                       |  |  |
| 队化/又积4至70            | 排放速率(kg/h | )                | 4.64×10 <sup>-3</sup> |                       |                       |  |  |
| 采样日期: 2020.          | 03.26     |                  |                       |                       |                       |  |  |
| 检测项目                 | 检测频次      |                  |                       | 第一次                   |                       |  |  |
| 低浓度颗粒物*              | 排放浓度(mg/m | ( <sup>3</sup> ) |                       | 6.0                   |                       |  |  |
| TRYPIN DE MAN TELLEM | 推放速率(kg/h | )                | Month.                | 5.05×10 <sup>-3</sup> | Jones                 |  |  |
| 备注                   |           |                  | ****                  |                       | <i>y</i>              |  |  |
| 田工                   |           |                  |                       |                       |                       |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Secretary of  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - D17 - F | 7/8*              |                       | Walter Control of the Control |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-----------------------|-------------------------------|
| 检测点名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14#排气筒        | 1出口,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1</b>  | 非气筒品              | 高度 (m)                | 15                            |
| 烟道截面积<br>(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.           | 上设备////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0         | 运行                | <b></b> 负荷            |                               |
| 采样日期: 2020.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )3.25         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |                       | estala.                       |
| 检测项目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 检测频次          | 第一次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 第二        | 二次                | 第三次                   | 第四次                           |
| 低浓度颗粒物*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 排放浓度(mg/m³)   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.:       | 5                 | 1.4                   |                               |
| 风水及秋粒初。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 排放速率(kg/h)    | 1.82×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.95×     | 10-3              | 1.77×10 <sup>-3</sup> | 1.85×10 <sup>-3</sup>         |
| 采样日期: 2020.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.26          | dill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                   |                       |                               |
| 检测项目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 检测频次          | 第一次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 第_        | 二次                | 第三次                   | 第四次                           |
| 低浓度颗粒物*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,排放浓度(mg/m³)  | ()1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         | .3                | 1.57                  | 1.4                           |
| IN AS IZ ARATAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 排放速率(kg/h)    | 1.73×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.57      | ×10 <sup>-3</sup> | 1/90×10 <sup>-3</sup> | 1.73×10 <sup>-3</sup>         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   | NAME OF STREET        |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 以下空白          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |                       |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |                       |                               |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                   |                       |                               |
| The state of the s |               | 14 may 200 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1400      |                   | 74                    |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |                   |                       |                               |
| and the Mant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in the        | Month of the State |           |                   |                       | de                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V6.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   | an straight in        |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |                       |                               |
| 备注                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |                   |                       |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95,5,5,5,5,5, | 7777, 7, 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2.2.    |                   |                       |                               |

### 无组织废气检测结果

| 14                                       | 1000                                  | Same, B | We.               |           | 3                                        | 100           |
|------------------------------------------|---------------------------------------|---------|-------------------|-----------|------------------------------------------|---------------|
| 4A.38d p-4-23                            | 检测                                    | 检测      | 栏                 | 测结果(mg/m³ | 3) "eng                                  | 2 里土店         |
| 检测时间                                     | 地点                                    | 项目      | 第一次               | 第二次       | 第三次                                      | 最大值           |
| 100 1 7h                                 | unb.                                  |         | Carolle In Street | 1         | 1 / 1/4 / // / / / / / / / / / / / / / / | ente          |
|                                          |                                       | 上风向 Q1  | 0.124             | 0.161     | 0.217                                    |               |
| 1,11                                     | 颗粒                                    | 下风向 Q2  | 0.230             | 0.178     | 0.253                                    | 0.207         |
|                                          | 物                                     | 下风向 Q3  | 0.159             | 0.268     | 0.307                                    | 0.307         |
| 2020.03.25.                              |                                       | 下风向 Q4  | 0.142             | 0.214     | 0.235                                    |               |
| 2020.03.23. <sub>4</sub>                 |                                       | 上风向 Q1  | 0.52              | 0.71      | 0.77/                                    |               |
|                                          | 非甲烷总                                  | 下风向 Q2  | 0.69              | 0.76      | 0.78                                     | 0.85          |
| A. A | ///////////////////////////////////// | 下风向 Q3  | 0.70              | 0.81      | 0.85                                     | 0.00          |
|                                          |                                       | 下风向 Q4  | 0.68              | 0.82      | 0.78                                     |               |
| 3                                        |                                       | 上风向 Q1  | 0.106             | 0.214     | 0.144                                    |               |
|                                          | 颗粒                                    | 下风向 Q2  | 0.141             | 0.249     | 0.234                                    | 0.285         |
|                                          | · 物。<br>·········                     | 下风向 Q3  | 0.141             | 0.285     | 0.180                                    | r "M"<br>undr |
| 2020.03.26                               | rests                                 | 下风向 Q4  | 0.229             | 0.232     | 0.252                                    |               |
| 2020.03.20                               |                                       | 上风向 Q1  | 0.50              | 0.65      | 0.69                                     |               |
|                                          | 非甲、烷总                                 | 下风向 Q2  | 0.56              | 0.99      | 0.76                                     | 0.99          |
| 7.7.7                                    | ····································· | 下风向 Q3  | 0.65              | 0:69      | 0.75                                     |               |
|                                          | aut                                   | 下风向 Q4  | 0.63              | 0.69      | 0.84                                     |               |
| <b>》</b><br>編注                           |                                       |         |                   | /         |                                          |               |

#### 噪声检测结果


|             | 2010/10/10/10/10 | 7.12.          | 5. a. 6. 6.     | 11.50     | a to the ta |
|-------------|------------------|----------------|-----------------|-----------|-------------|
| 松洞口 钿       | 测上炉口             | 大阪L上台          | 4000 n+ 60      | 检测结       | 果 dB(A)。    |
| 检测日期        | / 例 点 拥 亏        | 检测点位           | 检测时间            | 昼间        | 夜间          |
|             | web N1           | 项目地东侧边界外 lm    | :47             | 53.6      | 41.5        |
| 20200.03.25 | N2               | 项目地南侧边界外 1m    | 16:31~17:10     | 56:1      | 46.0        |
| 20200.03.23 | N3               | 项目地西侧边界外 1m    | 22:20~22:57     | 56.5      | 48.2        |
|             | N4               | 项目地北侧边界外 1m    |                 | 53.7      | 42.2        |
|             | Ņ1               | 项目地东侧边界外 1m    | <sup>C</sup> oo | 53.3      | 47.6        |
| 2020.03.26  | N2               | 项目地南侧边界外 1m-// | 17:05~17:47     | 55.1      | 43.4        |
| 2020.03.20  | / N3             | 项目地西侧边界外,Im    | 22:43~23:19     | 57.5      | 47.2        |
|             | N4               | 项目地北侧边界外 lm.   | y ·             | 56.1      | 45.9        |
| <b>备注</b>   | renth            | W. Kran        | 1 300,16        | Mana Mana |             |

#### 检测仪器设备信息

| 名称        | 型号          | 设备编号        |
|-----------|-------------|-------------|
| 多功能声级计    | AWA5688     | RW/INTR-075 |
| 便携式风向风速仪。 | PH-1 , ***, | RW/INTR-086 |
| 电子天平      | AUW120D     | RW/INTR-040 |
| 自动烟尘烟气测试仪 | XA-80F      | RW/INTR-032 |
| 自劲烟尘烟气测试仪 | XA-80F      | RW/INTR-033 |
| 气相色谱磐诺    | A91 plus    | RW/INTR-046 |
| 分光光度计     | 723N        | RW/INTR-009 |
| 红外测油仪     | OIL460      | RW/INTR-044 |
| 便携式多参数分析仪 | DZB-718     | RW/INTR-051 |
| 声校准器 //   | AWA6021A    | RW/INTR-074 |
| 综合大气采样器   | XA-100      | RW/INTR-035 |
| 综合大气采样器   | /XA-100/mm. | RW/INTR-036 |
| 综合大气采样器   | XA-100      | RW/INTR-037 |
| 综合大气采样器   | XÃ-100      | RW/INTR-038 |
| 备注        | /           |             |

#### 检测方法

| *                 | The second                            | The state of the s | Come William                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 样品类别              | 检测项目                                  | 检测方法、名称及编号(含年号)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 检出限                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 噪声                | 工业企业厂                                 | 《工业企业厂界环境噪声排放标准》<br>(GB 12348-2008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cours /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| #: WI VI IN F     | 非甲烷总烃                                 | 《固定污染源废气 总烃、甲烷和非甲烷总烃的测定<br>气相色谱法》(HJ 38-2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.07 \text{mg/m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 有组织废气             | 低浓度颗粒<br>物*                           | 《固定污染源废气 低浓度颗粒物的测定 重量法 》<br>(HJ 836-2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 非甲烷总烃                                 | 《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》、(HJ 604-2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 无组织废气             | ····································· | 《环境空气 总悬浮颗粒物的测定 重量法》<br>(GB/T15432-1995) 及其修改单(生态环境部公告。<br>2018年第 31 号)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.001mg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | PH                                    | 便携式 pH 计法《水和废水监测分析方法》(第四版)<br>国家环境保护总局(2002)3.1.6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | 化学需氧量                                 | 《水质 化学需氧量的测定 重铬酸盐法》<br>(HJ 828-2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | 悬浮物                                   | 《水质 悬浮物的测定 重量法》(GB/T 11901-1989)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 废水                | 氨氮                                    | 《水质 氨氮的测定 纳氏试剂分光光度法》<br>(HJ 535-2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.025mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ×.                | /总磷                                   | 《水质 总磷的测定 钼酸铵分光光度法》<br>(GB/T 11893-1989)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 17.7.<br>17.7.    | 石油类                                   | 《水质 石油类和动植物油类的测定》<br>《红外光度法》HJ 637-2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.06mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| . N               | enti                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 下空白                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.                |                                       | 9, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *13/<br>*8-8-8-8- |                                       | Marie Strategie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( Taranga ( Tara |
| <b>A注</b> /人      | 带""项目经客                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12050340)检测                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ž.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



固废■; 其他类(振 、环境空气O,废气(有组织正业废气、锅炉、 其他噪声(声源噪声)△;底泥、土壤□; 地表水、雨水公;气:无组织排放废气、 噪声和建筑施工场界噪声▲, 生活饮用水、 动等))令;2、无组织需注明风向和日期。 检测点位示意图说明: 4、水:废水 ★, 烧炉、油烟等)◎、噪声

附表 1、烟气参数表

|         | 检测点名     | 称          | · .        |             | 1.3          | 15#排气筒进 | ŧП          | -d.                    |                       |
|---------|----------|------------|------------|-------------|--------------|---------|-------------|------------------------|-----------------------|
| 采样      | 日期: 20   | 20.03.25   | gents      |             | The same     |         |             | a Marin                |                       |
| and the | 检测频次     | 烟温 (℃)     | 动压<br>(Pa) | 静压<br>(KPa) | 大气压<br>(kpa) | 含湿量 (%) | 流速<br>(m/s) | 测态烟气<br>排放量。<br>(m³/h) | 标态烟气<br>排放量<br>(m³/h) |
| 第       | 第一个      | 21.0       | 27         | -0.13       | 102.0        | 2.3     | 5.5*        | 1406                   | 1282                  |
| _ [     | 第二个      | 21.0       | 30         | -0.13       | 102.0        | 2.3     | 5.8         | 1482                   | 1352                  |
| 次       | 第三个      | 21.2       | 32         | -0.12       | 102.0        | 2.4     | 5.9         | 1508                   | 1373                  |
| 第       | 第一个      | 21.1       | 29         | -0.13       | 102.0        | 2.2     | 5.7         | 1457                   | 1329                  |
| =       | 第二个      | 21.3       | 30         | -0.13       | 102.0        | 2.3     | 5.8         | 1482 🔩                 | 1350                  |
| 次       | 第三个      | 21.4       | 32         | -0.13       | 102.0        | 2.4     | 5.9         | 1508                   | 1372                  |
| 第       | 第一个      | 21.6       | 27         | -0.13       | 102.0        | 2.3     | 5.6         | 1431                   | 1302                  |
| =       | 第二个      | 21.4       | 29         | -0.13       | 102.0        | 2.4     | 5.8         | 1482                   | 1348                  |
| 次。      | 第三个      | 21.5       | 29         | -0.13       | 102.0        | 2.2     | 5.7         | . 1457                 | 1327                  |
| 采样      | 日期: 202  | 20.03.26   |            |             |              |         |             | f.                     |                       |
|         | 金测<br>顷次 | 烟温<br>(°C) | 动压<br>(Pa) | 静压<br>(KPa) | 大气压<br>(kpa) | 含湿量 (%) | 流速<br>(m/s) | 测态烟气<br>排放量<br>(m³/h)  | 标态烟气<br>排放量<br>(m³/h) |
| 第       | 第一个      | 21.7       | 26         | -0.12       | 102.0        | 2.5     | 5.3         | 1355                   | .1230                 |
|         | 第二个      | /21.8      | 29         | -0.12       | 102.0        | 2.4     | 5.5         | 1406                   | 1277                  |
| 次「      | 第三个      | 21.8       | 28         | -0.12       | 102:0        | 2.5     | 5.4         | 1380                   | 1253                  |
| 第       | 第一个      | 21.9       | 32         | -0.12       | 102.0        | 2.6     | 5.7         | 1457                   | 1320                  |
| =       | 第二个      | 22.1       | 30         | -0.12       | 102.0        | 2.4     | 5.6         | 1431                   | 1299                  |
| 次       | 第三个      | 22.0       | 29         | -0.12       | 102.0        | 2.3     | 5.5         | 1406                   | 1278                  |
| 第       | 第一个      | 21.9       | 35         | -0.12       | 101.3        | 2.4     | 5.9         | 1508                   | 1361                  |
| 三       | 第二个      | 22:1.      | 26         | -0.11       | 101.3        | 2.5     | 5.3         | 1355                   | 1221                  |
| 次       | 第三个。     | 22.0       | 29         | -0.12       | 101.3        | 2.6     | 5.5         | 1406                   | 1266                  |

3.3

1. 7. Marie

RW200401015 第 12 页 共 14 页

附表 2、烟气参数表

| 門え   | ₹2、烟气         | 多数表        |            |             | 10             |         |             |                         |                       |
|------|---------------|------------|------------|-------------|----------------|---------|-------------|-------------------------|-----------------------|
|      | 检测点名          | 尔          |            |             | 1              | 5#排气筒出  | П           | alla,                   |                       |
| 采柏   | <b>日期: 20</b> | 20.03.25   | 1          |             |                | N. S.   |             |                         |                       |
| ich. | 检测///频次       | 烟温<br>(℃)  | 动压<br>(Pa) | 静压<br>(KPa) | 大气压<br>(kpa)   | 含湿量 (%) | 流速<br>(m/s) | 测态烟气。<br>排放量。<br>(m³/h) | 标态烟气<br>排放量<br>(m³/h) |
| 第    | 第一个           | 22.0       | 13         | 0.01        | 101.4          | 2.3     | 3.8         | 1313                    | 1188                  |
| _    | 第二个           | 22.9       | 11         | 0.01        | 101.4          | 2.2     | 3.6         | 1244                    | 1123                  |
| 次    | 第三个           | 23.1       | 14         | 0.01        | 101.4          | 2.1     | 3.9         | 1348                    | 1217                  |
| 第    | 第一个           | 23.2       | 12         | 0.01        | 101.4          | 2.3     | 3.7         | 1279                    | 1152                  |
|      | 第二个。          | 23.4.      | .13        | 0.01        | 101.4          | 2.4     | 3.8         | 1313                    | 1181                  |
| 次    | 第三个           | 21.4       | 32         | -0.13       | 102.0          | 2.4     | 5.9         | 1508                    | 1372                  |
| 第:   | 第一分。          | 21.6       | 27         | -0.13       | 102.0          | 2.3     | 5.6 //.     | 1431                    | 1302                  |
| 第二   | 第二个           | 21.4       | 29         | -0.13.%     | 102.0          | 2.4     | 5.8         | 1482                    | 1348                  |
| 次    | 第三个           | 21.5       | 29         | -0.13 A.A.  | 102.0          | 2.2     | 5.7         | 1457                    | 1327                  |
| 采样   | 日期: 202       | 20.03.26   |            |             |                |         |             |                         |                       |
|      | 检测<br>频次      | 烟温<br>(°C) | 动压<br>(Pa) | 静压<br>(KPa) | 大气压<br>(kpa)   | 含湿量     | 流速<br>(m/s) | 测态烟气<br>排放量<br>(m³/h)   | 标态烟气<br>排放量<br>(m³/h) |
| 第    | 第一个           | 22.9       | 12         | 0.00        | 101.4          | 2.2     | 3.7         | 1279                    | 1154                  |
| _    | 第三个           | 23:1/      | 9          | 0.00        | 101.4          | 2.4     | 3.5         | 1210                    | 1089                  |
| 次    | 第三个           | 23.3       | 11         | 0.00        | 101.4          | 2.3     | 3.6         | 1244                    | 1120                  |
| 第    | 第一个           | 23.7       | 13         | 0.00        | 101.4          | 2.4     | 3.7         | 1279                    | 1149                  |
| _    | 第二个           | 23.9       | 8          | 0.00        | 101.4          | 2.5     | 3.4         | 1175                    | 1054                  |
| 次    | 第三个           | 24.1       | 9          | 0.00        | 101.4          | 2.4     | 3.5         | 1210                    | 1085                  |
| 第    | 第一个           | 24.3       | 11         | 0.00        | 101.4          | 2.3     | 3.6         | 1244                    | 1117                  |
| 三    | 第二个           | 24:5       | 6          | 0.00        | 101.4          | 2.2     | 3.3         | 1140 🦾                  | 1024                  |
| 次    | 第三个           | 24.3       | 9          | 0.00        | 101.4          | 2.2     | 3.5         | 1210                    | 1087                  |
|      | 1. 11.        | te "tota   |            |             | 2. I The "11.5 | -       |             | 1. 1 4/11. 10           | 54                    |

#### 附表 3、烟气参数表 低浓度颗粒物\*

| 检测点           | 京名称,       | 2141     | 排气筒进口 1            |                          |
|---------------|------------|----------|--------------------|--------------------------|
| 采样日期:         | 2020.03.25 |          |                    | The second of the second |
| 检测//<br>频次-// | 含湿量(%)     | 流速 (m/s) | 测态烟气<br>排放量 (m³/h) | 标态烟气<br>排放量(m³/h)        |
| 第一次           | 2.5        | 8.0      | 893                | 809                      |
| 采样日期:         | 2020.03.26 |          |                    | 1/ 7)<br>V.              |
| 检测<br>频次      | 含湿量(%)     | 流速(m/s)  | 测态烟气<br>排放量(m³/h)  | 标态烟气<br>排放量(m³/h)        |
| 第一次           | 2.4        | 8.4      | 937                | 850                      |

#### **附表 4、烟气参数表** 低浓度颗粒物\*

|          |             | No. 243       |                    | The state of the s |
|----------|-------------|---------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 检测点      | 名称          | 14#           | 排气筒进口 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 采样日期:    | 2020.03.25  |               | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 检测<br>频次 | 含湿量(%)      | 流速 (m/s)      | 测态烟气<br>排放量 (m³/h) | 标态烟气<br>排放量(m³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 第一次      | 2.5         | 7.9           | 882                | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 采样日期:    | 2020.03.26  |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 检测       | 含湿量 (%)     | 流速(m/s)       | 测态烟气               | 标态烟气                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 频次       | 1000 至 (707 | VILLE (III/S) | 排放量 (m³/h)         | 排放量 (m³/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 第一次      | 2:3         | 8.3           | 926                | 841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## 附表 5./烟气参数表/低浓度颗粒物\*

| 检测点      | 名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14 Marie 14         | #排气筒出口               | Myna"                          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|--------------------------------|
| 采样日期:    | 2020.03.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                      |                                |
| 检测<br>频次 | 含湿量(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 流速 <sup>(m/s)</sup> | 测态烟气<br>排放量 (m³/h)   | <sup>7</sup> 标态烟气<br>排放量(m³/h) |
| 第一次      | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2                 | 1452                 | 1302                           |
| 第二次      | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2                 | 1452                 | 1300                           |
| 第三次      | 400 10 2 3 to 10 t | 4.1                 | 1417                 | 1267                           |
| 采样日期:    | 2020.03.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                      |                                |
| 检测频次     | 含湿量 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 流速(m/s)             | 测态烟气<br>排放量 (m³/h)// | 标态烟气<br>排放量 (m³/h)             |
| 第一次。     | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                 | 1382                 | 1239                           |
| 第二次      | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.9                 | 1348                 | 1209                           |
| 第三次      | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1                 | 1417                 | 1267                           |

附表 6、废气(无组织)气象参数:

| MI 45 Or 195                             |            | N => X : |            | 1.48 |        |     | 1.50% |
|------------------------------------------|------------|----------|------------|------|--------|-----|-------|
| 采柏                                       | <b>羊时间</b> | 温度℃      | 气压 kPa     | 相对湿度 | 风速 m/s | 风向  | 天气状况  |
| r <sub>ij</sub>                          | 第一次        | 18.6     | 101.8      | 54   | 2.7    | 东南风 | 晴     |
| 2020.03:25                               | 第二次        | 20.1     | 101.6      | 51   | 2.5    | 东南风 | 晴     |
| 1. 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1 | 第三次        | 22.5     | 101.2      | 46   | 2.1    | 东南风 | 晴     |
| in the                                   | 第一次        | 17.4     | ,, • 101.9 | 58   | 2.8    | 北风  | 阴     |
| 2020.03.26                               | 第二次        | 19.2     | //101.5    | 55   | 2.6    | 北风  | 阴     |
| , A                                      | 第三次        | 20.8     | 101.0      | 51   | 2.5    | 北风  | 阴     |

#### 附表 7、噪声气象参数:

| 采样时间          | 风速 <sub>m</sub> /s                    | 天气状况                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2020.02.25    | -A.7.\\\\\\                           | 晴么                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2020.03.25 夜间 | 2.0                                   | 晴。"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2020 03 26    | 1 Miles 24 1                          | / 期: \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2020.03.26 夜间 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Mark Market Mark |



## 附件

序号

2

 $\omega$  4  $\omega$ 

#### 公格 有证标准样品/质控样品 回收 标准值 检测值 $\bigcirc$ 合格率% 100% ×100% 加标回收检查》 样品加标 12.5% 废水质量控制结果统计表 检查率% 12.5% **合格率%** 100% 100% 100% 100% 现场平行。《》。室内平行 、平行構检查 、检查 2 7 7 4 格 8 8 8 100% 100% 7 检查 数 3. 合格率% 100% 100% 100% 全程序空白 : 检查数 2 新 (一) ....9I 91. 10 14 $\infty$ 废水 样品 类别 悬浮物、 分析项 化学需 氣量 氨氮 心 霧 pHШ

# 5气质量控制结果统计表

|       |        |              | _             |            |                | _             |
|-------|--------|--------------|---------------|------------|----------------|---------------|
|       |        | <b>-</b> □   | 合格            |            |                | _             |
|       | 6      | 引质控样品        | 回收            |            | for the second |               |
|       |        | 有证标准样品/      | 标准值           |            |                | Marine Marine |
|       | ·      | <del>作</del> | 检测值           | $\bigcirc$ | -              |               |
|       | 检查     | ,加标          | 今校家0%         | 0/4=1      | _              | 1 4170        |
|       | 加标回收检查 | 样品加          | 松石液0%         | 1          |                |               |
|       |        | 内平行          | 小格派%          | i<br>I     | 100%           | /             |
|       | 洋检查    | 室内           | 检查            | 鰲          | 9              | _             |
|       | 平行样检   | <b>多平行</b>   | 合格<br>·       |            | 1              | 1,4           |
|       |        | 现均           | 松             | 校          |                | See .         |
|       | 全程序空白  |              | 合格率%          |            | 100%           | 100%          |
|       | 全程戶    |              | 检查数           |            | 9              | 2             |
| A. A. | *      | 样品数          | €             |            | 727            | 26            |
|       |        | 样品           | <b>米</b><br>黑 |            | 廣气             | /             |
|       |        | 分析项          | Ш             |            | 非甲烷,总烃,        | 颗粒物           |
|       |        | 性            | Πþ            |            | -              | 7             |

# 噪声校准记录汇总表

| 校准器名称   | 声校准器      | 校准器编号》     | * RW-X05-01     | 检定/校准有效期          | 2020.08.15 |       |
|---------|-----------|------------|-----------------|-------------------|------------|-------|
| 校准声压级   |           |            | 94.0dB(A)       |                   |            | 2000年 |
| 设备名称    | 仪器编号      | 校准日期       |                 | 测量后校准值            | 示值偏差       |       |
| 多功能声级计  | RW-X04-01 | 2020.03.25 | 93.8            | 93.8              | <0.5       | - 泰   |
| 3<br>70 |           |            | 校准值-94.0dB)  示值 | 示值偏差应小于 0.5 dB(A) |            |       |

# 噪声校准记录汇总表

| 校准器名称  | 声校准器      | 校准器编号      | RW-X05-01         | 检定/校准有效期          | 2020.08.15 |     |
|--------|-----------|------------|-------------------|-------------------|------------|-----|
| 校准声压级  |           |            | 94.0dB(A)         |                   |            | 架次  |
| 设备名称   | 仪器编号      | 校准日期       | 测量前校准值            | 测量后校准值            | 示值偏差       | ę   |
| 多功能声级计 | RW-X04-01 | 2020.03.26 | 93.8              | 93.7              | <0.5       | 中格  |
|        |           | 示值偏差二 (校准( | (校准值-94.0dB)   示值 | 示值偏差应小于 0.5 dB(A) |            | 1.7 |